

BOĞAZİÇİ ÜNİVERSİTESİ kandilli rasathanesi ve deprem araştırma enstitüsü jeofizik anabilim dalı

Tel: 0216 3320242 Fax: 0216 3322681 e-mail : <u>gurbuz@boun.edu.tr</u>

İSTANBULU'UN ANADOLU YAKASI İÇİN ZEMİN SINIFLAMASINA YÖNELİK MİKROTREMOR ÇALIŞMALARI NİHAİ RAPOR

<u>B.Ü. KRDAE :</u>

Cemil Gürbüz, Niyazi Türkelli, Ömer Alptekin, Gülay Barbarosoğlu, Doğan Aksarı, Tuğçe Afacan Ergün, Tolga Komut, Doğan Kalafat, Birsen Can, Alper Denli, Uğur Teoman, Tülay Kaya, Seda Yelkenci, Gülten Polat, Aslı Er, Zeynep Coşkun, Metin Kahraman, Gülçin Güner

<u>İBB:</u>

Mahmut Baş, Hikmet Karaoğlu, Kemal Duran, Ahmet Emre Basmacı, Nurcan Züran

İÇİNDEKİLER

1	Giriş3
2	Arazi programı ve proje kapsamında yapılan çalışmalar5
3	Mikrotremorların kaynağı ve zemin koşullarının
	belirlenmesinde kullanımı10
4	Mikrotremor ölçümlerin alınmasında kullanılan kayıtçı
	sistemleri ve sismometreler11
5	Kullanılan yöntemler12
5	5.1 H/V yöntemi
	5.1.1 Spektral genlik yöntemi14
	5.1.2 Referans noktasına göre rölatif spektral
	oranlar yöntemi15
	5.1.3 Yatay bileşen spektrum değerlerinin rölatif olarak düşey
	bileşen spektrum değerlerine oranı yöntemi
	5.1.4 Yöntemin prensibi16
4	5.2 ReMi yöntemi17
	5.2.1 Hız spektrumu (p-f) analizi18
	5.2.2 S dalgası hız modellemesi20
	5.3 Dizilim yöntemi
	5.3.1 SPAC yöntemi
	5.3.2 F-K yöntemi
	5.3.2.1 Faz hızı tanımı27
	5.3.2.2 Faz hızının inversiyonu
6	Verilerin toplanması ve analizi31
	6.1 H/V yöntemi
	6.2 ReMi(Aktif) yöntem
	6.3 Dizilim (Pasif) yöntem
7	Dizilim(Pasif) yöntem 42
8	Sonuçlar53
9	Kaynaklar54

1. Giriş

Deprem aktivitesi yüksek bölgelerde yapılaşma öncesi mikrobölgeleme ile bölgenin uygunluğu araştırılmalıdır. Mikrobölgeleme çalışmalarında verilerin çok disiplinli toplanması ve sonuçların irdelenmesi ile doğru sonuçlara varmak mümkün olabilir. Bu amaçla sondaj, jeofizik, jeolojik ve jeoteknik incelemelerin birlikte yapılması zorunludur.

Deprem zararlarının ve yapılara olan riskin en aza indirilmesinde yerleşim yerlerinin jeolojik özelliklerinin ve zeminin depremler sırasındaki mekanik davranışının iyi bilinmesi gerekmektedir. Bu amaca ulaşabilmek için jeolojik ve jeofizik çalışmalar etkin olarak beraber kullanılmalıdır. Mevcut yerleşim alanlarında bilinen jeofizik yöntemlerin uygulanabilmesi logistik nedenlerden dolayı güçlükler göstermektedir. Bu güçlükler karşısında 1990 yılından sonra çevrede sorun yaratmıyacak mikrotremor yöntemi geliştirilmiştir. Bu yöntem geniş alanlarda lojistik engellerden etkilenmemesi nedeniyle kolaylıkla uygulanabilir. Yöntemde zemin sıflamasında en etkin olarak kullanılan parametrelerden biri olan ve uygulamada kesme dalgası olarak da bilinen sismik S dalgasının yayılma hızının belirlenmesi mümkündür. Ayrıca zeminin deprem dalgalarına karşı olan büyütmesi ve hakim periyodlarının da tespit edilmesi mümkündür.

Marmara bölgesi tektonik olarak aktif bir zonda yer almaktadır. Kuzey nadolu Fay Zonu üç kola ayrılarak Marma Denizinin içinden ve güneyinden geçmektedir. Bu bölgede tarih boyunca yıkıcı depremler olmuştur. Aktif fay hatlarının varlığı ve büyük depremlerin oluşması sonucu yapılaşmanın belirli kurallar çerçevesinde yapılması gereğini doğurmuştur. Yeni yerleşim alanlarının seçimi, mevcut yapıların zemin şartlarının incelenmesi ve imar planlarının hazırlanmasında jeofizik, jeolojik ve jeoteknik bilgilerin birlikte kullanılması ve yerleşime uygunluk haritaların hazırlanması gereği ortaya çıkmıştır. Zeminin yapısı ile ilgili bilgiler değişik jeofizik yöntemler kullanılarak elde edilmektedir. Bu yöntemlerden bir tanesi mikrotremor ölçümleridir. Mikrotremor ölçümlerle ölçüm noktasındaki hakim periyod ve büyütme değeri bulunabilir. Hakim periyod ve yerin gelen bir deprem dalgasını büyütme oranının bulunması yerleşim açısından oldukça önemlidir. Çalışma sahasındaki yerleşimin nasıl olacağı konusunda önemli bilgiler verebilir. Yapılacak binaların kat sayısı ile ilgili bilgiler elde edilebilir. Bina ile yerin titreşiminin neden olabileceği rezonans frekansı bulunabilir.

Yerleşim alanlarında temel kayanın üzerinde yeralan zeminin topoğrafya ile birlikte deprem dalgalarına nasıl etki edeceğinin bilinmesi mikrozonlama veya zeminin özelliklerinin belirlenmesinde önemli bir konudur. Bu amaçla çalışma sahasında mevcut olan zayıf hareket (weak motion) ve ivme (strong motion) ölçerlerden yararlanarak istenilen bilgilere ulaşma olasılığı vardır. Bu tür aletlerin yerel ölçüde mevcut olmaması veya yeterince örneklenmemesi durumunda mikrotremor kayıtlarının alınması ile bu probleme bir çözüm getirmek mümkün olmaktadır.

Mikrotremorlerin değişik geometri ve ölçeklerde kayıt edilmesi sonucu hakim periyod ve zeminin büyütme değerleri yanında S dalgası hız yapısıda bulunabilir. Uzun dalga boylu mikrotremor kayıtları ile derin yapıların ve buna bağlı S dalga hızının derinlikle değişiminin bulunması mümkündür (Horike, 1985 ; Matsushima and Okada , 1990). Ölçüler dizilim şeklinde alınır, faz hızları bulunur ve ters çözüm ile derinlik hız değişimine dönüştürülür. Uygulaması diğer jeofizik yöntemlere göre daha kolaydır ve şehir içinde de istenilen herhangi bir yer ve zamanda ölçüler alınabilir.

Bu proje kapsamında zemin sınıflandırılmasına dönük olarak mikrotremor ölçümleri yapılarak S dalga hızının derinlikle değişimi, zemin büyütmesi ve zemin hakim periyodu değerlerinin tayini için ölçümler alınmıştır. Çalışma alanı(Şekil 1) yaklaşık 300 km² lik bir alanı kapsamaktadır. Bu alan 2 km² lik gridlere bölünmüş ve 304 nokta belirlenmiştir. Bugüne kadar projenin ilk rapor aşamasında 56, ikinci aşamasında 62, üçüncü rapor aşamasında 154 ve son aşamasında 32 olmak üzere toplam 304 noktaya gidilmiş ve bu noktalarda aktif ve pasif ReMi ve H/V ölçümleri alınmıştır (Şekil 1). Ölçüm noktaları bölgenin jeolojik haritası üzerinede yerleştirilmiştir(Şekil 2). Harita üzerinde de görülebileceği gibi önceden belirlenen bazı noktalarda ölçülerin alınması lojistik nedenlerden dolayı mümkün olmamıştır. Bu iki nedenden dolayı olmuştur. Birinci neden noktaların orman içerside kalması ve ulaşımın mümkün olmaması. İkincisi ise askeri bölgelere düşen noktalardır ve izin almak mümkün olmamıştır.

2. Arazi Programı ve Proje Kapsamında Bugüne Kadar Yapılan Çalışmalar

Projenin başlangıcından bugüne kadar yapılan çalışmaları,

• çalışma sahasının 2 km² lik gridlere ayrılması ve noktaların koordinatlarının belirlenmesi.

• ölçüm aletlerinin ilgili firmalar tarafından tanıtımlarının yapılması

24 .4. 2006 : GEOMETRICs firması tarafından GEOD aletinin kullanımının öğretilmesi , arazide test kayıtlarının alınması ve laboratuvarda alınan verilerin analizi konularında eğitim ve Mikrotremor ölçümlerinin alınması, analizi ve yorumlanması konusunda konferans.

- 4. 5. 2006 : GÜRALP aletlerinin tanıtımı ve kullanımının gösterilmesi
- 18. 5. 2006 ilk arazi test çalışması.

• 3. 10. 2006 ve 26. 11. 2007 : Tarihleri arasında Japonyadan mikrotremor konusunda uzman bir profesörün enstitüye davet edilmesi. Prof. Okada

kaldığı süre içersinde 42 saat (iki aylık bir dönem içersinde) mikrotremor konusunda ders vermiştir. Ders verme yanında arazide alınan ölçülerin yorumlanması konusunda proje çalışanlarına yardımcı olmuş ve önemli katkılar yapmıştır.

• Aralık ayı (27. 12. 2007) sonunda İBB elemanlarına yarım günlük sismik verilerin değerlendirilmesi konusunda seminerin verilmesi.

Arazide verilerin toplanması: Aşağıda verilen tarihlerde arazide mikrotremor (H/V, ReMi ve Dizilim) ölçüleri alınmıştır.

2006 Yılı Arazi Çalışmaları (H/V ve ReMi):

. 20 05 2006 046 ve 047 nolu noktalar . 01 06 2006 396, 397 ve 398 nolu noktalar . 07 06 2006 394, 393 ve 392 nolu noktalar . 10 06 2006 385, 378 ve 386 nolu noktalar . 16 06 2006 369, 359 ve 370 nolu noktalar . 17 06 2006 P2, 345 ve 360 nolu noktalar . 22 06 2006 329, 344 ve 328 nolu noktalar . 24 06 2006 358, 343 ve 398 nolu noktalar . 27 06 2006 342, 326 ve 309 nolu noktalar . 28 06 2006 311, 310 ve 327 nolu noktalar . 06 07 2006 368, 377 ve 344 nolu noktalar . 07 07 2006 367, 366 ve 365 nolu noktalar . 08 07 2006 325, 341 ve 356 nolu noktalar . 10 07 2006 382, 383 ve 381 nolu noktalar . 11 07 2006 380, 389 ve 390 nolu noktalar

•	12 07 2006	373, 362 ve 363 nolu noktalar
	13 07 2006	364, 352 ve 351 nolu noktalar
	14 07 2006	353, 354 ve 355 nolu noktalar
	15 07 2006	339, 340 ve 324 nolu noktalar
	02 08 2006	307, 308 ve 321 nolu noktalar
	03 08 2006	271, 289 ve 290 nolu noktalar
	04 08 2006	270, 322 ve 323 nolu noktalar
	05 08 2006	273, 291 ve 292 nolu noktalar
	14 08 2006	252, 253 ve 272 nolu noktalar
	15 08 2006	336, 337 ve 338 nolu noktalar
	16 08 2006	286, 287 ve 288 nolu noktalar
	17 08 2006	303, 304 ve 305 nolu noktalar
	18 08 2006	249, 250 ve 251 nolu noktalar
	19 08 2006	267, 268 ve 269 nolu noktalar
	29 08 2006	348, 349 ve 350 nolu noktalar
•	30 08 2006	231, 232 ve 233 nolu noktalar
•	02 09 2006	319, 333 ve 335 nolu noktalar
	03 09 2006	211, 212 ve 213 nolu noktalar
•	12 09 2006	299, 300, 301 ve 302 nolu noktalar
	13 09 2006	265, 283, 284 ve 285 nolu noktalar
	14 09 2006	317, 318, 320 ve 324 nolu noktalar
	15 09 2006	263, 264, 281 ve 282 nolu noktalar
	16 09 2006	207, 208, 209 ve 210 nolu noktalar
	22 09 2006	7 noktada H/V ölçümlerinin tekrarı

2007 Yılı Arazi Çalışmaları(H/V ve ReMi):

. 20 05 2007 248, 229 ve 230 nolu noktalar . 09 06 2007 245, 226, 227 ve 228 nolu noktalar 10 06 2007 225, 206, 186 ve 185 nolu noktalar 21 06 2007 169, 170, 190 ve 191 nolu noktalar . 22 06 2007 166, 167 ve 168 nolu noktalar . 23 06 2007 165, 187, 188 ve 189 nolu noktalar . 28 06 2007 332, 314, 315 ve 316 nolu noktalar . 03 07 2007 295, 296, 297 ve 298 nolu noktalar 05 07 2007 280, 278, 277 ve 276 nolu noktalar 06 07 2007 257, 258 ve 259 nolu noktalar 143, 144, 145 ve 146(H/V ölçüsü alınmadı) nolu noktalar . 11 07 2007 . 17 07 2007 124, 125, 126 ve 127 nolu noktalar . 19 07 2007 141, 142, 147, ve 148 nolu noktalar . 01 08 2007 261, 260, 144, 283 145 (sadece H/V ölçümü) nolu noktalar . 02 08 2007 260, 261, 241 ve 222 nolu noktalar 03 08 2007 240, 239, 238 ve 237 nolu noktalar 04 08 2007 223, 224, 205 ve 203 nolu noktalar . 05 08 2007 221, 219, 218 ve 217 nolu noktalar . 06 08 2007 202, 200, 199 ve 198 nolu noktalar 164, 163, 162 ve 161 nolu noktalar . 07 08 2007 . 08 08 2007 184, 183, 182 ve 181 nolu noktalar . 09 08 2007 180 ve 179 nolu noktalar 10 08 2007 107, 106, 105 ve 103 nolu noktalar . 11 08 2007 123,104, 122, 121 ve 105(H/V) nolu noktalar . 12 08 2007 178, 177, 176 ve175 (H/V ölçüsü yok) nolu noktalar . 13 08 2007 102, 101, 100 ve 99 nolu noktalar . 14 08 2007 196,197,156,155 ve 177 (H/V) nolu noktalar . 14 09 2007 157,158,159 ve 160 nolu noktalar . 15 09 2007 201, 132, 153, 154 ve 175(H/V) nolu noktalar

. 16 09 2007	133, 134, 135, 136 ve	176(H/V) nolu noktalar
. 17 09 2007	099, 100, 101 ve 143	sadece H/V ölçümü
. 05 09 2007	137, 140, 119 ve 120	nolu noktalar
. 06 09 2007	P3, 112, 093 ve 094	nolu noktalar
. 07 10 2007	113, 114, 115 ve 116	nolu noktalar
. 19 10 2007	137, 138, 117 ve 118	nolu noktalar
. 20 10 2007	079, 078, 076 ve 077	nolu noktalar
. 21 10 2007	095 ve 096	nolu noktalar
. 27 10 2007	097, 098, 080 ve 081	nolu noktalar
. 28 10 2007	085, 084, 083 ve 065	nolu noktalar
. 29 10 2007	087, 088 ve 082	nolu noktalar
. 02 11 2007	061, 062 ve 063	nolu noktalar
. 03 11 2007	065, 066, 067 ve 068	nolu noktalar
. 04 11 2007	069, 070 ve 071	nolu noktalar

2008 Yılı Arazi Çalışmaları (H/V ve ReMi):

•	02 04 2008	033, 034, 048 ve 049	nolu noktalar
•	20 05 2008	016, 017, 023 ve 024	nolu noktalar
•	19 09 2008	050, 052, ve 053	nolu noktalar
	22 09 2008	026, 027 ve 028	nolu noktalar
	08 10 2008	007, 004, 011 ve 012	nolu noktalar
	09 10 2008	020, 019, 018 ve 025	nolu noktalar
•	10 10 2008	005, 008, 013 ve 014	nolu noktalar
	11 10 2008	037, 038 ve 028	nolu noktalar
•	13 10 2008	039, 040, ve 054	nolu noktalar

Avrupa Yakası Dizilim Ölçümleri

•	22 07 2008	Ma5 ve Ma6	nolu noktalar
	23 07 2008	MA3 ve Ma5	nolu noktalar
	24 07 2008	Ma1 ve Ma2	nolu noktalar

Anadolu Yakası Dizilim Ölçümleri

nolu noktalar	29 ve 30	29 03 2008	
nolu noktalar	25 ve 26	30 03 2008	•
nolu noktalar	27 ve 28	31 03 2008	
nolu noktalar	22 ve 23	01 04 2008	•
nolu noktalar	21 ve 24	03 04 2008	
nolu noktalar	19	04 04 2008	
nolu noktalar	05 ve 09	05 04 2008	
nolu noktalar	17 ve 20	06 04 2008	
nolu noktalar	01 ve 06	07 04 2008	•
nolu noktalar	14 ve 18	08 04 2008	
nolu noktalar	12 ve 15	09 04 2008	
nolu noktalar	10 ve 11	10 04 2008	•
nolu noktalar	13 ve 16	11 04 2008	•
nolu noktalar	07 ve 08	12 04 2008	•
nolu noktalar	02 ve 03	26 04 2008	
nolu noktalaı	04	16 05 2008	•
nolu noktalar	29 ve 30	29 03 2008	
nolu noktalar	29 ve 30	29 03 2008	
nolu noktalar	29 ve 30	29 03 2008	

- Verilerin kayıtçılardan labaratuvarda bilgisayar ortamına aktarılması
- H/V programının yeni veri toplama sistemine ayarlanması ve analizi
- ReMi ve Dizilim yazılım programlarının kullanımının öğrenilmesi ve verilerin Analizinin yapılması.
- H/V, ReMi ve Dizilim ölçülerinin tamamı analiz edilmiş ve nihai rapor hazırlanmıştır.

çalışmalarında, ölçüm alınacak noktaların lokasyonları Arazi coğrafi koordinatlarıyla belirlenmiş, ve bu bulunan coğrafi koordinatlar yardımıyla arazide el GPS' i ile noktalar bulunmuştur. Noktaların yerleri, arazide belirli limitler içerisinde değiştirilmiştir. Arazide noktaların belirlenmesinde mümkün önceden belirlenen noktasından olduğu kadar grid uzaklaşılmamaya çalışılmıştır. Ama noktanın topoğrafyası, ulaşım sorunu ve ölçüm almaya uygun olmaması nedeniyle ayni konumda alınması mümkün olmayan yerler olmuştur. Bazı noktalara logistik nedenlerden dolayı gidilememiştir. Ayrıca noktaların yerini bulmak oldukça zor olmuş ve bulunan noktaların her iki yöntemede uygun olup olmadığı araştırılmıştır. Diğer önemli bir nokta gidilen noktanın topoğrafyasının düz olup olmamasıdır.

3. Mikrotremorlerin kaynağı ve zemin koşullarının belirlenmesinde kullanımı

Yer içersinde yayınan sismik dalgaları yer gürültüsü adı verilen mikroseizim ve yüzey dalgaları oluşturmaktadır. Bu gürültülerin kaynağı farklı yerlerden ve yönlerden gelmektedir. Gelen sinyallerin salınımları kısa ve uzun periyodlu olmaktadır. Uzun periyodlu salınımları atmosferik olaylar yaratmaktadır. Diğer salınımlar ise yerel ve uzak kaynaklı olabilir (trafik böyle bir kaynağı oluşturabilir). Değişik kaynaklar nedeniyle oluşan yerdeki salınımlar zeminin yapısına bağlı olarak bir hakim titresim frekansına sahiptir. Doğal olan bu titreşimi ölçmek için yapay kaynaklı yerel gürültülerden uzak alanlar seçilmelidir. Yerleşim alanlarında mikrotremor ölçülerin alınması için en uygun zaman çevresel gürültünün en az olduğu gece saat 12 ile sabah 6 saatleri arası veya trafiğin az yoğun olduğu tatil günleridir. Bu saatler dışında da ölçüler alınabilir. Ölçüler içersideki yüksek genlikli anlık sinyaller veriden arındırılarak dogal yerel gürültü elde edilebilir. Bunun içinde kayıt üresinin uzun tutulmasında yarar vardır. Alınan ölçülerdeki hakim doğal frekans etkilenmemekle beraber genlik değerleri biraz yüksek çıkmaktadır. Ölçülerin gürültünün az olduğu zamanlarda alınması daha sağlıklı sonuçların alınmasını sağlayabilir.

Normal bir mikrotremor kaydı yüksek genlikli yakın alan gürültüleri içermemelidir. Bu tür gürültüler çok yüksek frekanlı olduklarından dalgaların derinlere nüfuz etmesi mümkün değildir. Derinlerden bilgi alabilmek için sinyallerin derinlerde yayılması gerekmektedir. Yüzey dalgalarının derinlikle değişimleri yer altı yapısının heterojen olmasına bağlıdır. Ayrıca tek bir dalga yerine farklı dalgalar farklı hızlarda yayndıkları için yayındıkları ortam hakkında bilgi taşımktadırlar. Bu nedenle dispersif özellik taşımaktadırlar. Mikrotremör ölçümlerindeki amaç bu dalgaları kayıt etmektedir. Bu dalgalar gürültü olarak algılanmalarına rağmen gerçekte arzu edilen bir sinyal türüdür. Bu dalgaların üretilebilmesi için uzak bir kaynak ve tabakalı bir yapının var olması söz konusudur. Değişik ortam ve şartlardaki doğal ve yapay kaynaklar bu dalgaların üretilmesine neden olabilir. Önemli olan bu dalgaların kayıt edilebilmesidir.

4. Mikrotremor ölçümlerin alınmasında kullanılan kayıtçı sistemi ve sismometreler

Mikrotremor ölçümlerinin alımında yer içersinde oluşan ve sürekli yayınan gürültüleri ve deprem dalgalarının ölçmek amacıyla son teknoloji kullanılarak üretilmiş ve sayısal olarak kayıt yapabilen ve bellek kapasitesi 4 Gb olan GÜRALP CMG-6T sismometresi ve GEOMETRICS marka 12 kanallı GEOD sismik kayıt aletleri kullanılmıştır. H/V ölçümleri üç bileşen geniş bandlı CMG-6T sismometresi ile, ReMi ise GEOD sismik kayıtçısı ile alınmıştır. ReMi ölçümlerinde doğal frekansı 4.5 Hz ve 2 Hz olan jeofonlar ve dizilim ölçümlerinde ise daha derinlerden bilgi almak amacıyla doğal frekansı 0 ile 100 Hz olan geniş bandlı sismometreler kullanılmıştır. Dizilim öçlümlerinde tek kanallı REFTEK Texan 125 sayısal aleti kullanılmıştır. Bu aletlerden çok sayıda olması nedeniyle ay nı anda 10 alet birlikte çalıştırılmıştır. Bu şekil bir günde iki noktada ölçülerin alınması mümkün olmuştur. Aletlerin hafiza kapasitesi 256 Mbyte tır. Aletlerin çalışma zamanı istenildiği gibi ayarlanabilir. Aletlerin tamamı aynı anda set edilir ve arazide sadece sismometre bağlantısı yapılır. Kurukma aşamasında GPS ile dahili saatler sinkronize edilerek zaman ayarı yapılmış olur. Bu şekilde aletlerin hepsi aynı zamanda çalışmaya başlar ve önceden belirlenen zamanda durur.

CMG-6T sismometresinin içinde 4 Gb lık bir hafiza vardır ve veriler doğrudan burada saklanmaktadır. Ayrıca verieri doğrudan bir bilgisayarada kayıt sırasında aktarmak mümkündür. Bu veriler isteğe bağlı olarak belirli zaman dilimlerinde aktarılabilir. Bu çalışmada veri aktarma aralığı 20 - 30 dakika arası seçilmiştir. Veri alma süresi çalışma bölgesideki çevresel gürültülere göre bazı noktalarda artırılmıştır. GEOD sisteminde kayıt ortamı doğrudan bir Laptop üzerine yapılmaktadır. GEOD aletinin çalıştırılması, parametrelerin ayarlanması bu alete bağlı bir laptop kanalıyla yapılmaktadır. Aletin 12 çıkışlı bir kablosu ve çıkışlar arası 10 m dir. Alınan ölçüler anında görüntülenmektedir . Bu kayıtların kalitesi ve ölçülerin alınıp alınmadığını kontrol etmek açısından önemlidir.

5. Kullanılan Yöntemler

S dalgası hızının derinlikle değişimini, zeminle ilgili hakim periyod ve büyütmeleri bulmak için çeşitli yöntemler vardır. Her yöntemin kendine göre avantajlı ve dezavantajlı olduğu yönleri vardır. S dalgası hızının derinlikle değişimini bulmaya gelindiğinde üç farklı yaklaşım vardır.

1. Yapay kaynak kullanılarak S dalgası hızı hesabı. Bu yönteme konvansiyonel yöntem adı verilmektedir. Bu yöntemin logistik nedenlerden, uygun kaynağın yeterince sağlanamaması ve pahalı olması nedeniyle yerleşim alanlarının bulunduğu bölgelerde uygulanması mümkün değildir. Ayrıca profil uzunluğu kaynak ve lojistik nedenlerden dolayı istenilen uzunlukta seçilememetedir. Buda kısa açılıma neden olmakta ve yapılan çalışmalar ile inilen derinliğin yeterli olmaması nedeniyle uygun değildir.

2. Diğer bir yöntem kuyuların açılması ve bu açılan kuyulardan sonik logların alınmasıdır. Bu yaklaşım oldukça pahalıdır ve başka bir amaçla açılması zorunlu olan kuyularda veya özellikle bu iş için özel kuyuların açılması sonucu yapılabilir. Ayrıca tortul tabakanın kalın veya temel kayanın derin olduğu durumlarda uygulanması tercih edilecek bir yöntem değildir.

3. Diğer yöntemler doğal kaynaklara dayanmaktadır. Bu yöntemler değişik şekilde mikrotremor ölçümlerin alınmasıyla olmaktadır. Mevcut olan üç yöntem alıcıların bir dizilim şeklinde serilmesi ile olmaktadır. Burada amaç dispersiyona uğramış yüzey dalgalarını kayıt etmektir. Gözlenen yüzey dalgalarından frekansa bağlı olarak S dalgası hızlarının bulunması ve elde edilen bu frekans – S dalgası hız eğrisinden ters çözümü ile derinlikle S dalgası hız değişiminin belirlenmesidir. Zemin büyütmesi ve hakim periyod temel kaya üstündeki tortul tabakaların toplam etkisinden kaynaklanmaktadır. Bu tabakaların kalınlığı değişkendir ve bir km den büyük olabilir. Bu nedenle kullanılan yöntemin bu derinlikleri örnekliyecek şekilde seçilmesi gerekmektedir. Dizilim yöntemleri dışında sadece zemin büyütmesi ve hakim periyodu belirleyen ve tek istasyon kaydına dayanan mikrotremor yöntemi vardır. Bu yöntem H/V olarak

bilimektedir. Bir noktada belirli bir süre gürültü kaydı alınarak yapılabildiği gibi deprem kayıtlarıda kullanılabilir.

5.1 H/V Yöntemi

Depremler sonucu yerleşim alanının deprem kaynağından uzaklığına bakmaksızın yıkıma neden olabilirler. Buna neden zeminlerin, deprem dalgalarına sahip oldukları topoğrafya ve jeolojik yapıya göre farklı davranmasından kaynaklanmaktadır. Bu açıdan zeminlerin deprem dalgalarına olan tepkilerinin bilinmesi önemlidir ve mikrozonlama ile bir yerleşim alanının planlanmasında çok önemlidir.

Mikrotremor ölçümlerinin zeminin ve bu zemin üzerindeki yapıların dinamik tepki karakteristiklerinin tanımlanmasında etkin bir rolü vardır. Mikrotremor ölçümleri deprem zararlarının enaza indirilmesi ve olası bir depremden zarar görmemek için yerleşim alanlarında yapılması gereken bir işlemdir. Mikrotremor ölçüleri herhangi bir zamanda ve istenilen zaman aralığında alınabilir. Ölçülerin alımı sırasında çevresel gürültünün enaz olması istenir. Bu nedenle ölçüler çevresel gürültünün az olduğu hafta sonları veya gece geç saatlerde alınmalıdır. Mikrotremor çalışmalarında henüz kesin olmayan noktalar mikrotremörün kaynağı ve mikrotremorlara neden olan dalga türleridir. Eğer yerel jeoloji karmaşık değilse mikrotremor ölçümlerinden hakim periyod ve büyütmenin miktarı belirlenebilir. Mikrotremor kayıtlarının analizinde farklı teknikler kullanılmaktadır. Bu teknikler spektral genlikler, referans olarak alınan bir noktaya göre rölatif spektral oranlar ve yatay bileşenin rölatif olarak düşey bileşene olan spektral oranlarıdır. Deprem kayıtları kullanıldığında S dalgaları alınmaktadır. Kullanılan bu yöntemler kısaca aşağıda verilmiştir. Her yöntemin

kendine göre uygulanabilirlik alanları vardır. Çalışma bölgesine ve mevcut şartlara göre bir yöntem seçilerek kayıtlar alınmalıdır.

5.1.1 Spektral genlik yöntemi

Bu yöntemde Kobayashi ve diğ. (1986) miktotremorları düşey olarak yayınan S dalgaları ve bir mikrotremorun kaynak spektrumunu beyaz gürültü olarak kabul eder. Bu çalışmaya iyi bir örnek Gutierrez ve Singh (1992) 'in çalışmasıdır. Referans olarak alınan noktadaki spektrum değeri ilgilenilen frekans bandı için düz alınmıştır. Diğer bir deyişle spektrumda belirgin bir pik değer yoktur. Sağlam kayadaki spektrum değeri sabit kabul edilir ve yumuşak zemindeki spektrum değerine sağlam zeminden elde edilen spektrum değeri bölünerek bir pik değer bulunur. Bulunan bu değerden ölçü noktasına ait zeminin büyütmesi ve doğal hakim frekansı belirlenebilir.

5.1.2 Referans Noktasına Göre Rölatif Olarak Spekral Oranlar Yöntemi

Kagami ve diğ.(1986) yumuşak ve sağlam zeminlerde kayıt edilmiş zayıf ve kuvvetli yer hareketi sismogramların S dalgası kısmından spekrum oranlarını hesaplıyarak zemin ile ilgili bilgileri elde ederler. Referans noktasındaki haraket yumuşak zemine tabandan gelen tetikleyici harakete eşdeğer kabul edilerek zeminin sismik dalgalara olan tepkisi hesaplanabilir. Referans noktasındaki spektrumun düz olması gerekmez.

5.1.3 Yatay Bileşen Spektrum Değerlerinin Rölatif Olarak Düşey Bileşen Spektrum Değerlerine Oranı Yöntemi

Bu yöntem son yıllarda çok kullanılmaya başlanmış ve değişik ülkelerde araştırma konusu olmuştur ve Nakamura yöntemi olarak bilinmektedir (Nakamura , 1989). Bu yöntem mikrotremorların Rayleigh dalgalarından oluştuğunu ve yerel kaynaklardan üretildiğini varsayar. Düşey bileşen hareketi yumuşak toprak tarafından büyütülmez. Yerel etkiyi yüzeyde yatay ve düşey bileşenlerin spektrum oranlarından belirliyebiliriz. Bu yöntemin geçerliliği için önerilen varsayımlar nümerik modellerlede doğrulanmıştır (Lermo ve Chavez-Garcia , 1994). Bu yöntem Meksika da üç farklı bölgeye uygulanmış ve diğer yöntemlere göre daha başarılı bulunmuştur. Bu bölgeler tektonik ve jeolojik açıdan birbirlerinden farklıdırlar.

Mikrotremor ölçüsü yanında deprem kayıtlarıda zayıf ve kuvvetli yer hareketi kayıtçılarının kullanımı zeminin hakim periyodu ve büyütme değerelerinin hesaplanmasında kullanılmıştır (Field ve Diğ., 1995 ; Suzuki ve diğ., 1995). H / V oranı yerin tepkisinin transfer fonksiyonunu temsil eder. Yumuşak zeminin oluşturduğu bir tortul tabakanın temel rezonans frekansının belirlenmesinde etkin ve güvenilir bir yöntemdir. Diğer taraftan yerin büyütme faktörünün tahmininde yanılgıya neden olabilir. Genellikle ikinci yöntemle bulunan değere göre biraz küçük kalmaktadır. Ama iki yöntemle bulunan değer arasında doğrusal bir işilki vardır (Konno ve Ohmachi, 1998). İki yöntem arasındaki fark büyük boyutlarda değildir. Mikrotremor yöntemiyle bulunan büyütme değerlerinin diğer yöntemlere göre biraz küçük çıkmasının nedeni tam olarak bilinmemektedir. Önemli olan hakim periyodun bulunmasıdır. Yapılan bütün çalışmalarda diğer yöntemlerle bulunan değerlerle hemen hemen ayni sonuçları vermektedir. Kullanım kolaylığı ve ölçülerin hızlı bir şekilde alınması nedeniyle tercih sebebi olmaktadır.

5.1.4 Yöntemin Prensibi

Yöntemin esasını bir yarı sonsuz düzlem üzerinde yeralan yumuşak toprak tabasının varlığı oluşturur. Bu durumda dört bileşenden bahsetmek gerekir(Finn, 1991). İki bileşen yüzeyde ve iki bileşen ise yarı sonsuz düzlemde yeralmaktadır. Kaynağın genlik etkisini aşağıda verilen orandan tahmin edebiliriz.

$$A_s = V_s / V_b \qquad 1$$

Burada V_s yüzeydeki düşey hareketin genlik spektrumu ve V_b ise yarı düzlemdeki düşey bileşen hareketin genlik spektrumudur. Yerel etki ise

bağıntısı ile verilir (Nakamura, 1989). Burada H $_{\rm s}$ yüzeydeki yatay bileşen hareketin genlik spektrumunu ve H $_{\rm b}$ ise toprak tabakasının tabanındaki yatay bileşen hareketin genlik spektrumudur. Kaynak etkisi ile S $_{\rm e}$ yi tamamlamak için değiştirilmiş yeni bir yerel etki fonksiyonu hesaplanmalıdır.

$$S_{m} = S_{e} / A s \qquad 3$$

Bu ise şuna eşdeğerdir.

Sonuç olarak H_b / V_b oranının bir olduğunu varsayarsak, yerel etki fonksiyonu (kaynak etkisi giderilmiş) şu şekilde ifade edilebilir;

$$S_m = H_s / V_s$$
 5

Mikrotremor kayıtlarından yukarıdaki bağıntı yardımıyla yerleşim alanlarındaki hakim periyod ve bu periyoda tekabül eden büyütme değerlerinin hesaplanması mümkündür.

5.2 ReMi Yöntemi

Bu yöntem iki temel düşünce üzerine kurulmuştur. Kırılma amaçlı kullanılan aletlerle ve jeofonların benzer dizilimi ile 2Hz e kadar yüzey dalgalarının kayıt edilmesi mümkündür. İkinci önemli kısım bir miktotremor kaydından p - f dönüşümü ile iki boyutlu frekans yavaşlılık ilişkisinin bulunması ve buradan Rayleigh dalgalarının diğer sismik dalgalardan ayırt edilmesinin mümkün olmasıdır. Sonuçta, gerçek faz hızının görünür hızın bir fonksiyonu olarak belirlenebilmesidir.

Ölçüler, bir profil boyunca serilmiş jeofonlar ile alınmaktadır. Bu yöntemde tek jeofonda kullanılmakla beraber tercih sebebi değildir. Jeofonlar gevşek toprak üzerine konup üzerleri örtülebilir. Jeofonlaron aralıkları 8 ile 20 metre arasında değişebilir. Bu seçilen jeofon aralığı ve sayısı kullanılan enerji kaynağına bağlıdır

Bu yöntemde bir doğrultu boyunca yerleştirilmiş jeofonlardan kayıtların alınması söz konusudur. Bu şekilde elde edilen hızlar gerçek hızdan ziyade görünür hızlardır ve gerçek değerden daha yüksektirler. Görünür faz hızlarının alt sınırı gerçek faz hızı olarak alınabilir.

Kullanılan jeofonların frekans duyarlılığı rezonans frekansının altındadır. Bunu artırmak için gelen sinyaller sayısallaştırılmadan önce bir ön süzgeçten geçirilerek alçak frekanslardaki genlikler küçük değerlere çekilebilir. ReMi yönteminin avantajlı tarafı hızlı ve pahalı bir yöntem olmamasıdır. Herhangi bir sismik kırılma aleti ile alınabilir ve gürültülü ortamda çalışılabilir. Trafik, ağaçların rüzgarda salınması , binaların sallanması ve yerin sarsılmasına neden olan diğer çevresel gürültüler yüzey dalgalarının oluşmasına neden olurlar. Dezavantajı açılım uzunluğunun sınırlı olmasıdır. Buda inilen derinlikle işilkilidir. Bilgi alınan derinlik normal şartlarda profil uzunluğununun yarısı kadardır.

5.2.1 Hız Spektrumu (p-f) Analizi

Hız spektrumu analizinin esasını Thorson ve Claerboot(1985) tarafından tanımlanan eğimli yığma " slant stack" oluşturur. Bu yöntem Sismik kayıttan bir kısmı alır (genliklerin uzaklık ve zamanın bir fonksiyonu olarak, x,t) ve genlik ışın parametresi (p) grafiğine dönüştürür. Görünür hızın tersi ve kesişme zamanı "tau" elde edilir. Bu dizilim yöntemlerinde kullanılan F-K (frakans – dalga sayısı) analizine benzerdir.

p-tau transformasyonu bir sismik kayıdın A(x, t) uzaklık (x) ve zaman (t)'nın çizgisel bir integralidir

Burada p = dt/dx dir ve görünür hızın. V_a x yönündeki tersidir. X nx şeklinde dx aralığında sayısallaştırılmıştır. Böylece x = j dx olur. Benzer şekilde zamanda sayıllaştırılmıştır. t = i dt. Bu şekilde p-tau dönüşümünün sayılaştırımış hali elde edilir ve tau = k dt eğimli yığma olarak adlandırılır.

$$A(p=p0+l dp,tau=k dt) = \sum_{j=0,nx-1}A(x=j dx,t=i dt=tau+p x) \dots 7$$

 $p0 = -p_{max}$. p_{max} ile başlanır ve bu minimum hızın tersini belirler. Np değeri nx'in bir veya iki katı alınır. Burada dp 0.0001 ile 0.0005 sec/m arasında değişir. Bu $-p_{max}$ den p_{max} kadar 2np adımlarla değişmeyeyi sağlar. Bu şekilde kırılma hattı boyunca enerji yayılımının analizini sağlar. t = tau+p x aralığına düşen genlikler enterpole edilerek bulunur.

Analizdeki bir sonraki adım A(p,tau) daki p-tau izi (2) ve onun karmaşık Fourier transformunu tau veya kesişme zamanı doğrultusunda hesaplamaktır

$$F_{A}(p,f) = \int_{tau} A(p,tau) e^{-i 2 pi f tau} dtau \qquad \dots \qquad 8$$

Sayısal Fourier dönüşümü, f = m.df

$$F_{A}(p,f=m df) = \sum_{k=0,nt-1} A(p,tau=k dt) e^{-i 2 p i m df k dt}.....9$$

Güç spektrumu S_A(p,f) karmaşık Fourier dönüşümünün karesidir

Burada, * kompleks konjugayı gösterir. Bu yöntem profil doğrultusunda ileri ve geri p-tau dönüşümlerini toplar. İki yönden enerjiyi tek bir yavaşlılık eksenine toplama ile p nin absulut, |p|, değerini verir ve yavaşlılık ekseni katlanır ve p=0 etrafında toplanır.

Bu şekilde bir kaydın uzaklı-zaman dan p-f uzayına dönüşümü sağlanmış olur. Burada p profil boyunca hızın tersini verir. Birden fazla kayıdın analiz edilmesi ile her bir p-f imajları $S_{An}(|p|,f)$ nokta ve nokta şeklinde ilave edilir ve toplam güç bulunur.

$$S_{\text{total}}(|\mathbf{p}|, \mathbf{f}) = \sum_{n} S_{\text{An}}(|\mathbf{p}|, \mathbf{f})$$
12

Yavaşlılık – frekans analizi bir yerdeki kayıtlardan toplam spectral gücün heasplanmasını verir. Bu eğriden period-hız grafiği oluşturulabilir. p-tau dönüşümü doğrusaldır. Dönüşüm alçak geçişli bir süzgeç gibi çalışmaz.

Dispersiv dalgalar bir eğime sahiptir ve mikrotremor kayıtlarında bulunan diğer dalga türlerinde bu eğimlilik mevcut değildir. p-f güç spektrumu ile bu dalgaların varlığı belirlenmiş olur.

5.2.2 S-Dalgası Hız Modellemesi

ReMi yöntemi düz çözüm ile modelleme yapar ve S dalgası derinlik değişim değerini verir. p-f imajlarından normal (temel) mod dirpersif veriyi alır ve düz çözüm modellemesi yapar. Modellemede her bir frekanstaki faz hızı için iterasyon yapar. Eğer çözüm iterasyon parametreleri içersinde bulunmazsa derinlikle hız tersliliği verir. Modelin değiştirilmesi ile gözlemsel ve kuramsal dirpersiyon eğrileri arasında çakışma sağlanabilir. Yorumlama yorumcunun bu konudaki deneyimine bağlıdır.

Modellemelerde Poisson oranı 0.25 alınmaktadır. Sığ ortamlarda bu oran geçerli olmıyabilir. İnteraktif modeleme sonucu Poisson oranındaki büyük değişmelerin S dalgası hızında % 10 luk bir değişime neden olduğu görülmüştür. Poisson oranı 0.1 den 0.4 de değişirse Rayleigh faz hızından elde edilen S dalga hızındaki değişim % 89 ile % 95 arasında olmaktadır.

Buradan görülmektedir ki Rayleigh dalgası dispersiyon eğrileri S dalgası hız yapısı için iyi bir yoldur ve P dalgas hız yapısı için uygun değildir.

5.3 Dizilim Yöntemi

5.3.1 SPAC Yöntemi

SPAC yöntemi ilk olarak Aki (1957) tarafından yüzey dalgalarından faz hızını belirlemek için kullanılmıştır.

A ve B noktalarındaki mikrotremor kayıtları r_0 and $r_0 + r$ deki kayıtlar olarak alınmıştır. A ve B deki dalgacıklar:

$$X(t,r0) = \iint_{-\infty}^{\infty} e^{iwt + ik(r+r0)} Z(w,k) \quad 13$$

Burada w is frekans, k ise dalga sayısı vektörüdür. Z(w,k) ise,

1.
$$E[dZ(w,k)] = 0$$
 w,k, ϕ leri bütün değerleri için 15

2.
$$[|dz(w,k)|^2] = dH(w,k)$$
 w,k, ϕ nin bütün değerleri için .. 16

3.
$$E[dZ^*(w,k)dZ(w',k') = 0 w,w' ve k,k' nin farkları için. 17$$

Burada H mikrotremorun integral spektrasıdır.

Özel Otokorasyon Fonksiyonu:

 $S(r_0,r) = E[X^*(t,r_0) \cdot X(t,r_0+r)]$ 18

E ortalamayı ve * komplex conjugayı gösterir. Eğer mikrotremor yüzey dalgalarının ana modlarından oluşmuşsa, k w'nın bir fonksiyonudur. (18) e (15), (16) ve (17) ilave edilirse

$$S(r_0, r) = E[X * (t, r_0) . X(t, r_0 + r)] = E\left[\int_{-\infty}^{\infty} e^{-iw't - ik'r'_0} dZ * (w', k') . \int_{-\infty}^{\infty} e^{iwt + ik(r^0 + r)} dZ(w, k)\right]$$
 19

$$= \int_{-\infty}^{\infty} e^{ik(r_0 + r) - ikr_0} dH(w, k) \quad \dots \quad 20$$

Eğer mikrotremor spektral yoğunluğa sahipse h(w,k),

dH(w,k) = h(w,k) dwdk

olur ve (20) şu şekilde yazılabilir,

$$S(r_0, r) = \int dk \int_{-\infty}^{\infty} dw e^{ikr} h(w, k) \quad 21$$

Eğer kutupsal koordinatlar r=r($\cos\theta$, $\sin\theta$, k=k($\cos\phi$, $\sin\phi$) ise (21) numaralı denkleme injekte edilirse (21) nolu denklem

$$S(r,\theta) = \int_{-\infty}^{\infty} \left[\int_{0}^{2\pi} e^{ikr\cos(\theta-\phi)} h(w,\phi) d\phi \right] dw = \int_{-\infty}^{\infty} g_w(r,\theta) dw$$
²²

Olur. Burada $g_w(r,\theta)$ Uzaysal Kovaryans Fonksiyonu olarak adlandırılır.

r₀ koordinatında Uzaysal Kovaryans Fonksiyonu:

$$So = S(r_0, 0) = E\left[\left|X(t, r_0)\right|^2\right] = \int_{-\infty}^{\infty} \left[\int_{0}^{2\pi} h(w, \phi) d\phi\right] dw = \int_{-\infty}^{\infty} h_0(w) dw$$
23

 $h_0(w)dw$, w ve w+dw arasındaki ortalama gücü verir. Böylelikle S₀ mikrotremordaki toplam enerjiyi verir.

W frekansında Uzaysal Kovaryans Fonksiyonunun uzaysal ortalaması :

$$\widetilde{g}_{w}(r,\theta) = \frac{1}{2\pi} \int_{0}^{2\pi} g_{w}(r,\theta) d\theta$$

(16) numaralı denklemden

$$\widetilde{g}_{w}(r,\theta) = \frac{1}{2\pi} \int_{0}^{2\pi 2\pi} \int_{0}^{2\pi \cos(\theta - \phi)} h(w,\phi) d\phi d\theta \qquad 25$$

Elde edilir. θ is Bessel fonksiyonu J_0 ile belirlenebilir.

$$\widetilde{g}_{w}(r,\theta) = J_{0}(kr) \int_{0}^{2\pi} h(w,\phi) d\phi$$
26

(21) nolu denklemden

$$\widetilde{g}_w(r,\theta) = J_0(kr)h_0(w)$$
 27

Elde edilir. Ortalama Otokorolasyon Fonksiyonu

$$\widetilde{S}(r) = \int_{-\infty}^{\infty} J_0(kr) h_0(w) dw$$
28

ile verilir. (28) nolu denklemin sağ tarafı mikrotremorun toplam gücünü verir. Uzaysal olarak ortalaması alınmış otokoralayon fonksiyonu mikrotremorun güç spektrumu $h_0(w)$ ile standart hale getirilir. Bu şekli ile Uzaysal Otkoralasyon Fonksiyonu $\rho(w,r)$ adı verilmiştir,

$$\rho(w,r) = \frac{\widetilde{g}(r,\theta)}{h_0(w)} = J_0(kr) = J_0\left[\frac{wr}{c(w)}\right]$$
 29

c(w) Rayleigh dalgasının faz hızıdır. Böylece bir dizilim boyunca mikrotremor kaydı alınırsa frekansın fonksiyonu olarak faz hızı bulunabilir. Uzaysal Otokoralasyon Fonksiyonu dizilime bağımlıdır ve ortamın özelliklerini yansıtır.

Eğer alıcıların arazideki konumları farklı ise (24) nolu bağıntı

$$\rho(w,r) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{g_w(r,\theta)}{\sqrt{h_0(w).h_r(w)}} d\theta$$

şeklinde yazılabilir.

5.3.2 F-K Yöntemi

Düzgün olmıyan bir dizilimden elde edilen mikrotremor ölçümleri ve bulunacak faz hızı f-k güç spektrumundan bulunabilir. F-K güç spektrumunu bulmak için üç farklı yöntem kullanılmaktadır: Beam forming yöntemi (BFM) (LaCoss et al., 1969) ; Maksimum olasılık yöntemi (MLM) (Capon, 1969); ve Maksimum entropi yöntemi (MEM) (McDonough, 1974). En yüksek ayrımlılık MEM yöntemi ile erişilmektedir. Yalnız bu yöntemde verinin doğrusal bir dizilimle toplanmış olması gerekmektedir. MLM yöntemi BFM yönteminden daha doğrulukla f-k spektrum tahmini verir. Şehir içi çalışmalarda jeofon aralıklarının eşit olarak alınamaması durumunda kullanılabilir.

F-K spektra $P_b(f, k)$ BFM yöntemiyle şöyle verilebilir.

$$P_{b}(f,k) = \sum_{l,m=1}^{n} \phi_{lm} \cdot \exp\{ik(X_{l} - X_{m})\} \quad 31$$

Burada f is frekans, k iki boyutlu yatay dalga sayısı vektötü, n ise alıcı sayısıdır. ϕ_{lm} ise çapraz güç spektrumu tahminidir. X₁ ve X_m birinci ve sonuncu alıcıların koordinatlarıdır.

MLM yöntemi F - K spektrumunu $P_m(f, k)$ verir,

$$P_m(f,k) = \left(\sum_{i,m=1}^n \phi_{im}^{-1} \cdot \exp\{ik(X_i - X_m)\}\right)^{-1} 32$$

Burada ϕ_{lm} ⁻¹ ϕ_{lm} matrisinin tersidir . İki yöntem arasındaki tahmin farkı pencere fonksiyonudur. BFM nin pencere fonksiyonu k₀ dalga sayısı için

$$W_b(k,k_0) = (1/n^2) \sum_{l,m=1}^n \exp\{i(k-k_0)(X_l-X_m)\}$$
33

Pencere fonksiyonu sadece bir alıcı lokasyonu için belirlenmiştir. MLM yönteminde ise,

$$W_{m}(k,k_{0}) = \left| \sum_{j=1}^{n} A_{j}(f,k_{0}) \right| W_{b}(k,k_{0})$$
 34

Burada

$$A_{j}(f,k_{0}) = \sum_{l=1}^{n} (\phi_{jl} \exp\{ik_{0}(X_{j} - X_{l})\})^{-1} / \sum_{j,l=1}^{n} (\phi_{jl} \exp\{ik_{0}(X_{j} - X_{l})\}^{-1}$$
35

MLM yönteminde pencere fonksiyonu sadece alıcı lokasyonuna değil ayni zamanda verinin kalitesinede bağlıdır. Capon (1969) MLM yönteminin

ayrımlılık gücünün BFM yöntemine göre yüksek olduğunu göstermiştir. MLM yöntemi ölçüm hatalarılarına çok hassatır (Liaw and McEvilly, 1979).

5.3.2.1 Faz Hızının Tanımı

Yüzey dalgaları dispersiftir ve yayınım hızları frekansa bağlı olarak değişir. İki tür yüzey dalgası vardır, Love ve Rayleigh. Uygulamada en çok Rayleigh dalgası kullanılır. Genellikle mikrotrmor verisi Rayleigh dalgasını içerir. Rayleigh dalgasının ana modundan hesaplanan faz hızı S dalga hızına eşittir. Faz hızı hesaplamalarında dalga grubunun tek bir hıza sahip olduğu varsayılır. X doğrultusunda seyahat eden dalga grubu şöyle verilebilir (Aki and Richards, 1980).

$$f(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| f(x,\omega) \right| \exp\left[-i\omega(t - \frac{x}{c(\omega)}) + i\phi(\omega) \right] d\omega$$
³⁶

Burada | f (x, ω | genlik spektral yoğunluğu, $\phi(\omega)$ faz terimini ve c (ω) faz hızını gösterir. Yayınım nedeniyle oluşa faz gecikmesi $\omega x / c$ (ω) mikrotremor kayıtlarının Fourier analizinden elde edilebilir. (1) bağıntının Fourier Dönüşümü :

$$\int_{-\infty}^{\infty} f(x,t) \exp(i\omega t) dt = \left| f(x,\omega) \right| \exp\left[i\phi(\omega) + i\frac{\omega x}{c(\omega)} \right] 37$$

x 1 ve x 2 uzaklıklarındaki iki istasyonda ölçüm yapılarak,

 $(\omega / c (\omega)) (x_1 - x_2) \forall 2n\pi, c(\omega)$ faz hızı hesaplanabilir.

Nümerik olarak faz hızını hesaplamak için yarı sonsuz bir ortamın varlığını kabul ederiz. P ve SV bileşenlerinin varlığını kabul ederiz ve onların genlikleri ile oynıyarak sınır şartlarını sağlamış oluruz. Uygun yerdeğiştirme potansiyelleri:

$$\phi = A e^{-az} e^{jqx}$$

$$\psi = B e^{-bz} e^{jqx}$$
38

Burad a = mk, $qx = k(x - V_R t)$. V_R Rayleigh dalgası hızı. $V_R = 0.919 \beta$. β ise S dalgası hızıdır. (38) bağıntısı aşağıdaki şartları sağlar

$$(\Lambda^{2} + h^{2})\phi = 0$$

 $(\Lambda^{2} + k^{2})\psi = 0$ 39

Burada $h = \omega / \alpha$, $k = \omega / \beta$. α P dalga hızı ve şu elde edilir

$$a^{2} = q^{2} - h^{2}$$

 $b^{2} = q^{2} - k^{2}$
40

Sınır şartlarındaki gerilimler

$$p_{xz} = 2 \mu e_{xz}$$

$$p_{zz} = \lambda \left(\nabla^2 \phi \right) e^{j\omega y} + 2 \mu e_{zz}$$
41

Burad λ ve μ are Lame sabitleridir. Eğer p _{xz} ve p _{zz} z = 0 da sıfır ise ;

$$2 j q a A + (2 q2 - k2) B = 0$$

(2 q² - k²) A - 2 j q b B = 0 42

(37) denklemi faz hızı, dalga numarası ve yapısal terimleri ihtiva eder. Bu denklemin çözümü sonucu S dalgası hızı bulunur

5.3.2.2 Faz Hızlarının İnversiyonu

S dalgası hızları kuramsal ve gözlemsel olarak elde edilen faz hızlarının mukayesesi sonucu hesaplanır. Bu bir ters çözümdür ve ters çözüm algoritması

Herrman (1987) tarafından geliştirilmiştir. Bu algoritma bir grid araştırması yapar ve gözlenmiş faz eğrilerine en iyi uyan değerleri bulur. Stokastik enküçük kareler ile x in değeri

$$|Ax - b| + |\sigma x| = MIN \text{ or } (Ax - b)^{T} (Ax - b) + \sigma^{2} x^{T} x = MIN$$
 43

bağıntısı ie bulunur. Bu enküçük kareler problemi ayni zamanda eigen değerleri ve vektörlerinin bir matrisi ilede ifade edilebilir. Çözüm vektörü x, varyans-kovaryans matrisi C ve çözüm matrisi R

$$X = V \left(\Lambda^2 + \sigma^2 I \right)^{-1} \Lambda U^T b = Hb$$
44

$$C = HH^{T} = V (\Lambda^{2} + \sigma^{2} I)^{-1} \Lambda^{2} (\Lambda^{2} + \sigma^{2} I)^{-1} V^{T}$$
45

$$\mathbf{R} = \mathbf{V} \left(\Lambda^2 + \sigma^2 \mathbf{I} \right)^{-1} \Lambda^2 \mathbf{V}^{\mathrm{T}}$$

$$46$$

olarak yazılabilir. Çözüm vektörü x y değişkenine ilişkilendirilebilir, W x = y or x = W⁻¹ y 47

$$|Ax - b| + |\sigma W x| = MIN$$

$$48$$

veya

$$|AW^{-1}y - b| + |\sigma y| = MIN$$
 49

 $A = A W^{-1} = U \lambda V^{T}$ olarak tanımlarsak, burada U, λ ve V matrisleri gösterir. Bu probleme çözüm:

$$X = W^{-1} V (\lambda^{2} + \sigma^{2} I)^{-1} \lambda U^{T} b$$
 50

$$R(x) = W^{-1} V (\lambda^{2} + \sigma^{2} I)^{-1} \lambda V^{T} W$$
51

$$C = W^{-1} V (\lambda^{2} + \sigma^{2} I)^{-1} \lambda^{2} (\lambda^{2} + \sigma^{2} I)^{-1} V^{T} (W^{-1})^{T}$$
 52

Ağırlıklandırma vektörü W çözümlerde minimize edilmiştir.

Sınama ve yanılma yöntemi ile gözlenmiş ve hesaplanmış faz hızları arasındaki fark belli bir değere inene kadar düşürülür. Başlangıç modelinden sayısal faz hızlarını belirlerken, P dalgası hızı / S dalgası hızı oranı ve yoğunluk verilir. Yoğunluk değeri

 $\rho = 0.1833 \ \beta + 2.0948 \ .$

bağıntısından bulunabilir.

6. Verilerin Toplanması ve Analizi

6.1 H/V Yöntemi

Kayıt süresi 20 - 30 dakika arası seçilmiştir. Bu süre çalışma noktasındaki çevresel gürültü durumuna göre ayarlanmıştır. Yeteri kadar veri elde etmek için gürültülü alanlarda veri alma süresi uzatılmıştır. Veriler GCF formatında alınmış ve daha sonra SAC formatına çevrilerek iş istasyonuna aktarılmıştır. SAC formatındaki veri uygun süzgeçlerden geçirildikten ve kayıtlar üzerindeki pik şeklindeki yapay gürültülerin kayıt üzerindeki yerleri belirlendikten sonra ASCII formatına çevrilmiştir. Sayısal olarak elde edilen mikrotremor kayıtları önce yapay gürültülerden DOS ortamında edit edilerek temizlenmiştir. Daha sonra Fourier genlik spektrumları alınmış ve spektrumda pik veren frekans değerleri ve göreceli olarak genlik değerleri bulunmuştur. Bu değerlerden en etkin olanından zeminin hakim frekansı çıkartılmıştır. Ayrıca birlikte

değerlendirilen yatay bileşen spektrum değerleri düşey bileşen spektrum değerlerine bölünerek kaynak ve yayınım yolu etkisi giderilmiş ve ölçünün alındığı zeminin büyütme değeri hesaplanmıştır. Büyütme değerleri bir başka ölçü noktasına göre rölatif olarak alınmamıştır. Referans olarak alınacak noktanın seçimi her zaman mümkün değildir. Ayrıca bu noktanın seçimi ekstra sorunlar yaratabilir.

Veriler (Nyquist frekansı = 50 Hz) 0 ile 50 Hz frekans değerleri arasında örneklenmiştir. Daha sonra bu veri yeniden örneklenerek örnekleme aralığı 0.01 saniyeden 0.02 saniyeye indirilmiştir. Böylelikle kullanılabilir frekans aralığı 25 Hz 'e çekilmiştir. Örneklenen veri yeteri kadar uzun seçilerek belirli bir süre kayıdın alınması sağlanmıştır. Elde edilen kayıtlar 81.92 saniyelik zaman dilimlerine bölünerek yeni dosyalar oluşturulmuştur. Bu veriler üzerinde bazı düzeltmeler yapılmıştır, örneğin süzgeçleme, ortalama ve trend giderme gbi. Kayıt süresine bağlı olarak frekans örnekleme aralığı 0.012 Hz dür. Bu frekans aralığında spektral genlikler hesaplanmıştır. Bir noktadaki ölçümden yedi ayrı veri gurubu oluşturulmuştur. Yerleşim alanında azda olsa çevresel gürültüler mevcuttur bu nedenle mikrotremor ölçümleri belirli oranlarda yapay gürültü içermektedir. Bu gürültüler analiz öncesi temizlenmiştir.

Mikrotremor ölçüleri "Yatay Bileşen Spektrum Değerlerinin Rölatif Olarak Düşey Bileşen Spektrum Değerlerine Oranı Yöntemi " kullanılarak değerlendirilmiştir. Bu yöntemde değişik zeminlerde ölçülen değerlerin Fourier genlik spektrumları hesaplanmakta ve daha sonra yatay bileşenler düşey bileşene bölünmektedir. Düşey bileşenin büyütmesi olmadığından elde edilen spektrum oranları yaklaşık olarak zeminin büyütme değerini vermektedir. Böylelikle kaynak ve yayınım yolu etkisi giderilmiş olmaktadır.

İki farklı yaklaşımla hakim periyod ve zemin büyütme değerleri hesaplanabilir.

Yüksek genklikli gürültülerin	Yüksek genklikli gürültülerin
ölçülen veriden ayıklanması	ölçülen veriden ayıklanması
\downarrow	\downarrow
Verilerin gruplara ayrılması	Verilerin gruplara ayrılması
\downarrow	\downarrow
Herbir grubun spekrumunun	Herbir grubun spekrumunun
Hesaplanması	Hesaplanması
\downarrow	\downarrow
Herbir spektrumdan güvenilir	Hersir altgrup için H/V
Olanların seçimi	değerlerinin hesaplanması
\downarrow	\downarrow
X(T), Y(T) vee($Z(T)$ için	Ortalama H/V spektrumunun
Ortalama spekrumun hesabı	hesablanması
\downarrow	\downarrow
Ortalama yatay spektrumun	En güvenilir spektrumun seçilmesi
Hesaplanması	
\downarrow	\downarrow
H/V spektrumun hesaplanması	Hakim periyod ve büyütmenin
hesaplanması	
\downarrow	
Hakim periyod ve büyütmenin	
Hesaplanması	

Projede Yöntem – 2 kulanılarak hesaplamalar yapılmıştır. Bir ölçüm noktasından alınan veri gurubundan oluşturan yedi değişik veri için Fourier genlik spektrum değerleri hesaplanmıştır. Her bir bileşen için Fourier genlik spektrumları hesaplandıktan sonra her bir veri gurubuna ait spektral oranlar bulunmuştur.

Burada h₁, h₂ ve v kuzey-güney, doğu-batı ve düşey bileşenlere ait spektrum değerleridir. Spektral oran değerleri bazı frekanslarda çok büyük pik değerlerine ulaşabilir. Bu sorunu aşmak için spektral oranlar alınmadan önce yuvarlatma işlemi uygulanabilir. Bu amaçla bileşenler için hesaplanan Fourier spektrum değerleri band genişlikleri 0.2, 0.3 ve 0.5 Hz olan Parzen penceresi ile yuvarlatılmıştır. Normal olarak band genişliği 0.5 Hz kullanılmaktadır. Veri boyu ve örnekleme aralığına bağlı olarak spektral verinin ön ve arkasından band genişliğinin yarısı kadar kayıp olmaktadır. Eğer düşük frekanslarda bir pik varsa bu yok edilebilir. Bunu görmek için veriler değişik band genişliklerinde yuvarlatılmışlardır. Band genişliği küçüldükçe yuvarlatma azalacak ve yüksek genlikli küçük pik değerleri baskın olacaktır. Yuvarlatma sonucu önemli olan baskın frekansın bulunmasıdır. Yuvarlatma sonrası her bir gurup veri için yukarıdaki bağıntıdan h/v oranları hesaplanmıştır. Daha sonra her bir veri gurubu için elde edilen değerlerin ortalaması alınmıştır. Bu çalışmada bir ölçüm noktasında yedi ayrı veri gurubu olduğundan yedi adet h / v oranının ortalamasından bu ölçüm noktasına ait h/v oranı bulunmuştur. Sonuçta bir nokta için elde edilen değerler yuvarlatılarak yüksek frekanslardaki değerler yok edilmiştir. Hesaplanan spektral oran değerlerinden frekansın bir fonksiyonu olarak grafikler olusturulmustur(Sekil 3 - 78).

Her bir grafikte yedi tane spektral oran (yatay bileşenlerin düşey bileşene oranı) ve bunların ortalaması verilmiştir. Her bir grafikten ölçüm noktasını eniyi temsil eden grafikten bu noktaya ait hakim frekans ve bu frekansa ait büyütme değerleri bulunmuştur. Grafikler incelendiğinde mikrotremor kayıtlarının genelinde belirgin pik değerleri vardır.

Hakim doğal frekansların (veya hakim periyod) herbir ölçüm noktasında alınan kayıtlarda belirlenmesi yapılmış ve bir hakim frekans (periyod) listesi

oluşturulmuştur ve alttaki çizelge 1 de verilmiştir. Bu çizelgede ayrıca yatay bileşenlerin düşey bileşene olan oranlarının (pik frakanslardaki genlik değerleri bölünerek) alınması sonucu belirlenen hakim frekanslardaki büyütme değerleride verilmiştir. Şekil 79 - 84 da zemin büyütme , hakim frekans ve hakim period değerlerinin dağılımı jeolojik ve topoğrafya haritaları üzerinde gösterilmiştir.

No	Tarih	Enlem	Boylam	Büyütme	Hakim Frekans (Hz)	Hakim Periyot(sn)
4	8 Ekim 2008	41.1360000	29.0936389	9	0.7	1.4
5	10 Ekim 2008	41.1364722	29.1244444	2.2	1.5	0.7
7	8 Ekim 2008	41.1258333	29.1013333	2.6	1.8	0.6
8	10 Ekim 2008	41.1246111	29.1215833	1.5	3.5	0.3
11	8 Ekim 2008	41.1137778	29.0870000	2.5	1.6	0.6
12	8 Ekim 2008	41.1151389	29.1056389	4	4	0.3
13	10 Ekim 2008	41.1128333	29.1197778	3.5	4.5	0.2
14	10 Ekim 2008	41.1189444	29.1266944	1.2	1.5	0.7
16	11 Mayıs 2008	41.1024722	29.0711667	1.5	3	0.3
17	20 Mayıs 2008	41.1016667	29.0887222	9	0.8	1.3
18	9 Ekim 2008	41.0973611	29.1090833	6	1	1.0
19	9 Ekim 2008	41.1003611	29.1237500	3.5	1.8	0.6
20	9 Ekim 2008	41.1024444	29.1361111	1.8	2.4	0.4
23	20 Mayıs 2008	41.0896944	29.0705000	1.4	3.2	0.3
24	20 Mayıs 2008	41.0894139	29.0866750	1.5	1.8	0.6
25	9 Ekim 2008	41.0928333	29.0988056	6	5	0.2
26	22 Eylül 2008	41.0882778	29.1187500	2	2	0.5
27	22 Eylül 2008	41.0899722	29.1348333	3	1	1.0
28	22 Eylül 2008	41.0886667	29.1495833	1.4	0.8	1.3
29	11 Ekim 2008	41.0880833	29.1669722	3	1.5	0.7
33	2 Nisan 2008	41.0780278	29.0712778	2	1.4	0.7
34	2 Nisan 2008	41.0778056	29.0865833	2	2	0.5
37	11 Ekim 2008	41.0753889	29.1271944	4	2	0.5
38	11 Ekim 2008	41.0755833	29.1490278	1.5	1.8	0.6
39	13 Ekim 2008	41.0757500	29.1653889	1.6	1.5	0.7
40	13 Ekim 2008	41.0742222	29.1817778	2	1.4	0.7
46	20 Mayıs 2006	41.0682222	29.0579167	4	1.3	0.8
47	20 Mayıs 2006	41.0646389	29.0700833	2.5	0.7	1.4
48	2 Nisan 2008	41.0646667	29.0866111	1.5	1.2	0.8
49	2 Nisan 2008	41.0651111	29.1022500	1.1	2.6	0.4
50	19 Eylül 2008	41.0654167	29.1179167	1.2	1.5	0.7
52	19 Eylül 2008	41.0642778	29.1500556	2.5	1.5	0.7
53	19 Eylül 2008	41.0636944	29.1670000	8	5	0.2
54	13 Ekim 2008	41.0652778	29.1839722	3	3.8	0.3
61	2 Kasım 2007	41.0543611	29.0536944	1.3	1.3	0.8
62	2 Kasım 2007	41.0543889	29.0702500	4	0.6	1.7
63	2 Kasım 2007	41.0535000	29.0838333	1.4	0.8	1.3
64	3 Kasım 2007	41.0531667	29.1016111	2.5	0.9	1.1
65	28 Ekim 2007	41.0528889	29.1173333	2	2	0.5
66	3 Kasım 2007	41.0525556	29.1333611	1.2	1.5	0.7
67	3 Kasım 2007	41.0501667	29.1504444	1.2	1	1.0
68	3 Kasım 2007	41.0531667	29.1643056	3.8	4.4	0.2
69	4 Kasım 2007	41.0521944	29.1820278	1.8	4.5	0.2
70	4 Kasım 2007	41.0528056	29.1935833	3	0.65	1.5

71	4 Kasım 2007	41.0474167	29.2168333	2.2	2.4	0.4
76	20 Ekim 2007	41.0415833	29.0407500	4	0.8	1.3
77	20 Ekim 2007	41 0413333	29.0531111	4.8	0.7	14
78	20 Ekim 2007	41 0411667	29.0694722	2.5	3.5	03
70	20 Ekim 2007	41 0427222	20.0004722	1.5	0.6	17
80	27 Ekim 2007	41.0423611	29.0000011	1.0	1.0	0.7
00	27 Ekim 2007	41.0423011	29.1010270	2.4	0.4	2.5
01	27 EKIII 2007	41.0392500	29.1176050	2.4	0.4	2.5
82	29 EKIM 2007	41.0412778	29.1327222	2.5	4.0	0.2
83	28 EKIM 2007	41.0385278	29.1512222	1.2	1.7	0.6
84	28 EKIM 2007	41.0419722	29.1675833	1	1.2	0.8
85	28 EKIM 2007	41.0402222	29.1811944	1.8	2	0.5
87	29 Ekim 2007	41.0389722	29.2123611	1	7	0.1
88	29 Ekim 2007	41.0386667	29.2280556	7	0.75	1.3
93	6 Ekim 2007	41.0292500	29.0213333	4.5	2	0.5
94	6 Ekim 2007	41.0300556	29.0360278	1.2	3	0.3
95	21 Ekim 2007	41.0293889	29.0537778	1.8	0.65	1.5
96	21 Ekim 2007	41.0302222	29.0687500	4	0.36	2.8
97	27 Ekim 2007	41.0301389	29.0841111	1.8	0.65	1.5
98	13 Ağustos 2007	41.0292500	29.1020000	2	0.7	1.4
99	13 Ağustos 2007	41.0294722	29.1166111	4	1.5	0.7
100	17 Eylül 2007	41.0280556	29.1326667	3	0.3	3.3
101	13 Ağustos 2007	41.0284722	29.1483889	1.8	1	1.0
102	13 Ağustos 2007	41.0287222	29.1641944	1.5	1.4	0.7
103	10 Ağustos 2007	41.0277500	29.1806667	12	1.3	0.8
104	11 Ağustos 2007	41.0280833	29,1945556	12	0.7	1.4
105	10 Ağustos 2007	41 0268056	29 2162500	4	23	0.4
106	10 Ağustos 2007	41 0274444	29 2256389	5	0.62	16
107	10 Ağustos 2007	41.0257500	29 2453889	2	0.9	1.0
112	6 Ekim 2007	41.0184722	20.2400000	2	1.4	0.7
112	7 Ekim 2007	41.0184722	29.0257222	28	0.7	1.4
114	7 Ekim 2007	41.0156111	29.0530944	2.0	1.5	0.7
114	7 Ekim 2007	41.0130111	29.0000011	2.5	1.5	0.7
110	7 Ekim 2007	41.0175000	29.0002222	2.5	1.0	0.0
110	7 EKIII 2007	41.0102500	29.0838333	2	0.95	1.1
117	19 EKIM 2007	41.0180944	29.0953056	1.8	1.0	0.7
118	19 EKIM 2007	41.0178889	29.1169167	6	1	1.0
119	5 EKIM 2007	41.0165000	29.1326667	6	0.8	1.3
120	5 Ekim 2007	41.0167500	29.1492778	2	3.2	0.3
121	11 Ağustos 2007	41.0144722	29.1626389	4	4	0.3
122	11 Ağustos 2007	41.0148333	29.1798056	15	0.5	2.0
123	11 Ağustos 2007	41.0161389	29.1958889	6	1.4	0.7
124	19 Temmuz 2007	41.0148611	29.2118333	15	0.6	1.7
125	19 Temmuz 2007	41.0146667	29.2276944	12	0.7	1.4
126	19 Temmuz 2007	41.0146667	29.2425833	2	1.4	0.7
127	19 Temmuz 2007	41.0145000	29.2594167	8	3.5	0.3
132	15 Eylül 2007	41.0075000	29.0228889	8	1	1.0
133	16 Eylül 2007	41.0060556	29.0379444	4	1.5	0.7
134	16 Eylül 2007	41.0055556	29.0518056	2.6	1.3	0.8
135	16 Eylül 2007	41.0054444	29.0683889	2.7	1.6	0.6
136	16 Eylül 2007	41.0063333	29.0835000	1.7	0.65	1.5
137	19 Ekim 2007	41.0045000	29.1005833	3	2.5	0.4
138	19 Ekim 2007	41.0047222	29.1160000	1.5	1	1.0
139	5 Ekim 2007	41.0037778	29.1334444	2.8	1.5	0.7
140	5 Ekim 2007	41.0039722	29.1480833	2.7	2.4	0.4
141	17 Temmuz 2007	41.0029444	29.1598333	7	1.3	0.8
142	17 Temmuz 2007	40.9998889	29.1796111	9	0.6	1.7
143	11 Temmuz 2007	41.0033889	29.1952222	2.4	3.4	0.3
144	11 Temmuz 2007	41 0028056	29 2116111	52	17	0.6
145	11 Temmuz 2007	41 0028333	29 2273611	15	0.7	14
146	11 Temmuz 2007	41 0020000	20.2210011	15	24	0.4
140		+1.0020000	20.2700210	1.0	£.7	V.T

147	17 Temmuz 2007	41.0019722	29.2588056	1.7	0.58	1.7
148	17 Temmuz 2007	41.0017500	29.2748056	9	0.55	1.8
153	15 Eylül 2007	40.9977778	29.0249167	10	2.2	0.5
154	15 Eylül 2007	40.9938333	29.0345278	1.8	2.1	0.5
155	14 Ağustos 2007	40.9952778	29.0521667	1.8	2.8	0.4
156	14 Ağustos 2007	40.9936111	29.0672222	2.2	0.8	1.3
157	14 Evlül 2007	40.9928056	29.0826944	1.8	1.5	0.7
158	14 Eylül 2007	40 9942222	29 0990278	3.8	15	0.7
159	14 Eylül 2007	40 9926111	29 1145556	1.8	1.5	0.7
160	14 Eylül 2007	40 9938611	29 1312778	3	23	0.4
161	7 Ağustos 2007	40 9931389	29 1471389	20	0.7	14
162	7 Ağustos 2007	40.9920000	20.1471000	1.5	0.7	1.4
163	7 Ağustos 2007	40.9915278	29.1023444	2.5	1.4	0.7
164	7 Agustos 2007	40.0011667	20 1052778	3	3.4	0.7
165	7 Agustos 2007	40.9911007	29.1952778	5	5.4	0.3
100	23 Haziran 2007	40.9049444	29.2114444	0	0.2	0.2
100	22 Haziran 2007	40.9906111	29.2200389	1.0	2.3	0.4
107	22 Haziran 2007	40.9903056	29.2420000	4	3.5	0.3
168	22 Haziran 2007	40.9900556	29.2583611	4	1.9	0.5
169	21 Haziran 2007	40.9901944	29.2738333	10	2	0.5
170	21 Haziran 2007	40.9904444	29.2866944	2.5	2.6	0.4
175	12 Ağustos 2007	40.9839444	29.0335556	6	5.5	0.2
176	12 Ağustos 2007	40.9823333	29.0511944	4	1.5	0.7
177	12 Ağustos 2007	40.9802222	29.0685556	1.8	1.6	0.6
178	12 Ağustos 2007	40.9821667	29.0811667	1.2	0.9	1.1
179	9 Ağustos 2007	40.9805556	29.1001667	3	2	0.5
180	9 Ağustos 2007	40.9804444	29.1164722	2	1.8	0.6
181	8 Ağustos 2007	40.9801944	29.1304444	25	0.58	1.7
182	8 Ağustos 2007	40.9796944	29.1452500	1.6	0.95	1.1
183	8 Ağustos 2007	40.9788611	29.1630556	4	1.8	0.6
184	8 Ağustos 2007	40.9805278	29.1789167	4	1.5	0.7
185	10 Haziran 2007	40.9795833	29.1943056	2.1	1.4	0.7
186	10 Haziran 2007	40.9789444	29.2092500	2	1.1	0.9
187	23 Haziran 2007	40.9800278	29.2267500	6	2.5	0.4
188	23 Haziran 2007	40.9790556	29.2434167	7	3.6	0.3
189	23 Haziran 2007	40.9778611	29.2582500	3.5	1.4	0.7
190	21 Haziran 2007	40.9789444	29.2750000	4	3.6	0.3
191	21 Haziran 2007	40.9760278	29.2886111	2	1.5	0.7
196	14 Ağustos 2007	40.9705278	29.0515000	1	1.5	0.7
197	14 Ağustos 2007	40.9708889	29.0686667	2.4	0.9	1.1
198	6 Ağustos 2007	40 9705278	29 0852222	1.8	0.8	13
199	6 Ağustos 2007	40 9684444	29 0981389	1.5	16	0.6
200	6 Ağustos 2007	40 9707222	29 1151944	3.5	14	0.7
201	15 Evlül 2007	40.9690278	29 1355000	1.8	0.95	11
202	6 Ağustos 2007	40 9703889	29 1471111	1.0	27	0.4
202	4 Ağustos 2007	40.9686944	20.1554722	1.0	0.7	1.4
205	4 Ağustos 2007	40.9672778	20.1055833	3.8	1.6	0.6
205	4 Agustos 2007	40.9072770	29.1900000	3.0	1.0	0.0
200	10 Haziran 2007	40.9070000	29.2090333	5	2.5	0.0
207	10 Eylül 2000	40.9005550	29.2250011	0	2.5	0.4
200	16 Eylül 2006	40.9005550	29.2415550	4	2.4	0.4
209		40.9001389	29.2000033	4	3.0	0.0
210		40.9629167	29.2/3///8	3.5	1.0	0.0
211	3 Eyiui 2006	40.9646667	29.2891111	1.8	2.0	0.4
212	3 Eyiui 2006	40.9659167	29.3037222	2	1.5	0.7
213	3 Eylül 2006	40.9655278	29.3208611	2	1.8	0.6
217	5 Ağustos 2007	40.9584167	29.0804167	2.4	0.65	1.5
218	5 Ağustos 2007	40.9584167	29.0988611	2	0.55	1.8
219	5 Ağustos 2007	40.9575000	29.1141111	2.5	4.2	0.2
221	5 Ağustos 2007	40.9561111	29.1462222	1.2	0.7	1.4
222	2 Ağustos 2007	40.9561667	29.1652778	16	0.65	1.5

223	4 Ağustos 2007	40 9586389	29 1779722	3	16	0.6
223	4 Ağustos 2007	40.0547779	20.1020922	2	1	1.0
224	4 Agustos 2007	40.9547770	29.1930033	2	1	0.7
225		40.9548889	29.2142500	1.4	1.0	0.7
226	9 Haziran 2007	40.9544167	29.2250000	3	3.4	0.3
227	9 Haziran 2007	40.9590278	29.2432500	1.5	1.6	0.6
228	9 Haziran 2007	40.9539722	29.2555833	2.8	0.45	2.2
229	20 Mayıs 2007	40.9534167	29.2726111	3.5	0.7	1.4
230	20 Mayıs 2007	40.9521111	29.2891944	3.8	2.7	0.4
231	30 Ağustos 2006	40.9525278	29.3058611	1.5	0.9	1.1
232	30 Ağustos 2006	40.9536111	29.3200278	2.8	1.5	0.7
233	30 Ağustos 2006	40.9529167	29.3371667	2	1.5	0.7
237	3 Ağustos 2007	40.9483611	29.1022778	2.2	1.5	0.7
238	3 Ağustos 2007	40.9449722	29.1144444	2	1.6	0.6
239	3 Ağustos 2007	40.9458611	29.1311667	2	1.6	0.6
240	3 Ağustos 2007	40.9441111	29.1471111	1.8	1.3	0.8
241	2 Ağustos 2007	40.9426111	29.1597778	5	1.4	0.7
245	9 Haziran 2007	40.9421111	29.2238333	2.4	2.3	0.4
248	20 Mayıs 2007	40.9415556	29.2728611	4	3.5	0.3
249	18 Ağustos 2006	40.9409722	29.2881111	4	2.3	0.4
250	18 Ağustos 2006	40 9415556	29 3049167	6	35	0.3
251	18 Ağustos 2000	40.9404722	29 3176944	45	2.2	0.5
252	14 Ağustos 2000	40.0386667	20.3363611	2.5	1.2	0.8
252	14 Agustos 2000	40.9300007	29.3503011	2.5	2.6	0.0
255	6 Tommuz 2007	40.9300009	29.3336669	2.0	2.0	0.4
257	6 Temmuz 2007	40.9354722	29.1104107	12	0.7	1.4
258	6 Temmuz 2007	40.9312778	29.1317778	15	0.65	1.5
259	6 Temmuz 2007	40.9336667	29.1455833	6	1.5	0.7
260	2 Agustos 2007	40.9326944	29.1610000	3.8	2.7	0.4
261	2 Agustos 2007	40.9325000	29.1750556	3	1.4	0.7
263	15 Eylül 2006	40.9303056	29.2086667	2.7	1.7	0.6
264	15 Eylül 2006	40.9268056	29.2253333	5	1.8	0.6
265	13 Eylül 2006	40.9314056	29.2391667	2.4	2	0.5
267	19 Ağustos 2006	40.9279722	29.2715833	8	1	1.0
268	19 Ağustos 2006	40.9298056	29.2873889	3.5	0.7	1.4
269	19 Ağustos 2006	40.9291389	29.3038611	2.8	1.5	0.7
270	4 Ağustos 2006	40.9293611	29.3195833	5	5	0.2
271	3 Ağustos 2006	40.9283889	29.3356667	2.5	2.8	0.4
272	14 Ağustos 2006	40.9297222	29.3508611	2	0.9	1.1
273	5 Ağustos 2006	40.9272222	29.3683889	2.5	1.3	0.8
276	5 Temmuz 2007	40.9194444	29.1295556	4	3.6	0.3
277	5 Temmuz 2007	40.9204722	29.1438056	5	3.5	0.3
278	5 Temmuz 2007	40.9208889	29.1593333	16	0.55	1.8
280	5 Temmuz 2007	40.9178611	29.1926667	18	0.45	2.2
281	16 Eylül 2006	40.9196389	29.2081111	3.5	1.6	0.6
282	16 Evlül 2006	40.9184722	29.2257222	4	1.5	0.7
283	13 Evlül 2006	40.9188611	29.2386361	15	0.5	2.0
284	13 Evlül 2006	40 9183611	29 2565278	3.5	1	10
285	13 Evlül 2006	40 9186944	29 2708889	2	18	0.6
286	16 Ağustos 2006	40 9169722	29 2874444	35	14	0.7
287	16 Ağustos 2006	40 9174167	29 3028889	4	14	0.7
288	16 Ağustos 2000	40.9163889	29 3133333	22	1.4	0.6
280	3 Ağustos 2000	40.9156667	20.33/0167	1.5	1.0	0.0
209	3 Ağustos 2000	40.9150007	20.3520444	3	1.2	0.0
290	5 Agustos 2000	40.9100270	29.0029444	25	1.2	0.0
291	5 Agustos 2006	40.9104/22	29.0009917	1.0	2	0.0
292	5 Agustos 2006	40.9148889	29.3812500	1.3	2	0.5
295	3 Temmuz 2007	40.9073333	29.1438056	10	0.5	2.0
296	3 Temmuz 2007	40.9076389	29.1605000	18	0.65	1.5
297	3 Temmuz 2007	40.9070833	29.1769444	18	0.7	1.4
298	3 Temmuz 2007	40.9073333	29.1932500	16	0.48	2.1
299	12 Eylül 2006	40.9063056	29.2021944	3	0.7	1.4

300	12 Eylül 2006	40.9068333	29.2250556	3.5	0.35	2.9
301	12 Eylül 2006	40.9050000	29.2384167	3	3	0.3
302	12 Eylül 2006	40.9052500	29.2554167	1.5	1.5	0.7
303	17 Ağustos 2006	40.9055278	29.2714167	4	1.1	0.9
304	17 Ağustos 2006	40.9040833	29.2870833	4	2.6	0.4
305	17 Ağustos 2006	40.9036389	29.3033333	2	2.6	0.4
307	2 Ağustos 2006	40 9033333	29 3350278	5	18	0.6
308	2 Ağustos 2006	40 9038889	29 3504167	5	25	0.4
309	27 Haziran 2006	40 9036667	29 3668611	1.8	17	0.6
310	28 Haziran 2006	40.9031111	29 3823333	24	43	0.2
311	28 Haziran 2006	40.9031944	29 3981667	2	1	1.0
314	28 Haziran 2007	40.8050722	29.3301007	16	1	1.0
215	20 Haziran 2007	40.0953611	29.1730111	1.0	16	0.6
216	20 Haziran 2007	40.8955011	29.1914107	1.6	2	0.0
310		40.8951111	29.2088056	1.0	2	0.5
317	14 Eyiul 2006	40.8946806	29.2230833	0.0	0.00	1.8
318	14 Eyiui 2006	40.8938833	29.2394444	1.8	1.4	0.7
319	2 Eylül 2006	40.8931389	29.2540278	4	2	0.5
320	14 Eylül 2006	40.8917778	29.2715000	4	1.5	0.7
321	2 Ağustos 2006	40.8906944	29.2873611	3	0.6	1.7
322	4 Ağustos 2006	40.8891944	29.3030278	5	1.4	0.7
323	4 Ağustos 2006	40.8951389	29.3188333	5.5	1.2	0.8
324	15 Temmuz 2006	40.8933056	29.3344722	1.4	2.5	0.4
325	8 Temmuz 2006	40.8912778	29.3488611	4	1.4	0.7
326	27 Haziran 2006	40.8937778	29.3654167	5.5	1.5	0.7
327	28 Haziran 2006	40.8908889	29.3827778	1.8	1.4	0.7
328	22 Haziran 2006	40.8909306	29.3978333	1.7	4	0.3
329	22 Haziran 2006	40.8905833	29.4136889	1.1	1.2	0.8
332	28 Haziran 2007	40.8816944	29.2090833	5	0.4	2.5
333	2 Eylül 2006	40.8817778	29.2213611	1.5	1.3	0.8
334	14 Eylül 2006	40.8817222	29.2394444	2.5	1	1.0
335	2 Eylül 2006	40.8815278	29.2540278	4	0.5	2.0
336	15 Ağustos 2006	40.8825833	29.2707222	2	2.2	0.5
337	15 Ağustos 2006	40.8803611	29.2871667	2.5	1.8	0.6
338	15 Ağustos 2006	40.8823333	29.2946667	4	3	0.3
339	15 Temmuz 2006	40.8816667	29.3188333	1.7	1.8	0.6
340	15 Temmuz 2006	40.8801667	29.3341111	2.4	1.5	0.7
341	8 Temmuz 2006	40.8790278	29.3493611	2	1.2	0.8
342	27 Haziran 2006	40 8798889	29 3660000	3	24	0.4
343	24 Haziran 2006	40 8794444	29.3813056	2.5	11	0.9
344	22 Haziran 2006	40.8790833	29 3983389	5.5	0.8	13
345	17 Haziran 2006	40.8786667	29 4137778	4	0.4	2.5
348	29 Ağustos 2006	40.8715278	20.9107770	5	0.7	1.4
340	29 Agustos 2000	40.8763056	29.2203722	2	1.5	0.7
350	29 Agustos 2000	40.8696944	20 25/10//	5	2.6	0.7
351	13 Temmuz 2006	40.8680722	29.2341944	15	1	1.0
252	13 Temmuz 2000	40.0009722	29.2713333	1.0	2.5	1.0
302	13 Temmuz 2006	40.0000000	29.2007770	4	2.0	0.4
353	14 Temmuz 2006	40.8699167	29.3037778	2.5	1.8	0.0
354	14 Terrinuz 2006	40.8686389	29.3174444	2.8	1.5	0.7
355	14 Temmuz 2006	40.8682778	29.3331389	2	3.5	0.3
356	8 Temmuz 2006	40.8658056	29.3498611	3	0.5	2.0
357	24 Haziran 2006	40.8674861	29.3651222	4.5	0.6	1./
358	24 Haziran 2006	40.86761111	29.38013889	2	0.6	1./
359	16 Haziran 2006	40.86505556	29.39575	2.5	1	1.0
360	17 Haziran 2006	40.86691667	29.41263889	3	3	0.3
362	12 Temmuz 2006	40.85705556	29.26875	2.5	1.5	0.7
363	12 Temmuz 2006	40.85680556	29.28480556	2.2	0.7	1.4
364	13 Temmuz 2006	40.85658333	29.30125	3	4.5	0.2
365	7 Temmuz 2006	40.85608333	29.3165	3	0.7	1.4
366	7 Temmuz 2006	40.86094444	29.33361111	2.4	2.5	0.4

					l	
367	7 Temmuz 2006	40.85966667	29.34747222	3	4.5	0.2
368	6 Temmuz 2006	40.85616667	29.36505556	1.5	1.3	0.8
369	16 Haziran 2006	40.85552778	29.38127778	3	0.7	1.4
370	16 Haziran 2006	40.85497222	29.39630556	2.5	1	1.0
373	12 Temmuz 2006	40.84533333	29.29997222	1.5	1	1.0
377	6 Temmuz 2006	40.84322222	29.36427778	4	1.5	0.7
378	10 Haziran 2006	40.841	29.37938889	2.5	1.5	0.7
380	11 Temmuz 2006	40.833	29.28480556	5	3	0.3
381	10 Temmuz 2006	40.83211111	29.29983333	3.6	0.7	1.4
382	10 Temmuz 2006	40.83275	29.31730556	1.5	1	1.0
383	10 Temmuz 2006	40.83069444	29.33180556	1.5	1.2	0.8
384	6 Temmuz 2006	40.83055556	29.34933333	1.5	0.9	1.1
385	10 Haziran 2006	40.83244444	29.36288889	3.5	4	0.3
386	10 Haziran 2006	40.83121944	29.37972778	6	0.4	2.5
389	11 Temmuz 2006	40.8215	29.28386111	4	1	1.0
390	11 Temmuz 2006	40.82094444	29.30005556	2.5	1.4	0.7
391	7 Haziran 2006	40.81955556	29.31430556	8	1.6	0.6
393	7 Haziran 2006	40.81972222	29.34830556	7	3	0.3
394	7 Haziran 2006	40.81877778	29.3635	4	3	0.3
396	1 Haziran 2006	40.80766667	29.34758333	4	2	0.5
397	1 Haziran 2006	40.80822222	29.364	3	2	0.5
398	1 Haziran 2006	40.79777778	29.34736111	3	1.5	0.7
P2	17 Haziran 2006	40.87988889	29.42772222	2.5	0.9	1.1
P3	6 Ekim 2007	41.02305556	29.00858333	2.6	2.6	0.4

Çizelge 1. H/V yöntemiyle bulunan hakim frekans, periyod ve büyütme değerleri.

6.2 ReMi(aktif) Yöntemi

Bu yöntem ile 304 noktada ölçüler alınmıştır. Verideki tersizlik nedeniyle kullanılan nokta sayısı 298 dir. Ölçümler bir doğrultu boyunca 12 adet doğal frekansı 4.5 doğal olan jeofonların kullanımı ile alınmıştır. Jeofon aralıkları 2006 yılı çalışmalarında 5 m ve profil uzunluğu kaynak noktasına göre 60 m dir. Ofset mesafesi 5 m dir. 2007 ve 2008 yıllarında ise jeofon aralıkları 8 m ve profil uzunluğu offset mesafesi dahil (24 m) 112 alınmıştır. Bu aralık açılımın uygun olmadığı yerlerde kısaltılmıştır. Böylelikle profilin orta noktasına göre 30 m ve 56 m derinliklerine kadar teorik olarak S dalgası hızı derinlik bilgisi elde etmek amaçlanmıştır. Teorik olarak bu noktaya inmek mümkündür ama arazinin

jeolojik yapısına bağlı olarak bu derinliklere kadar bilgi alamıyabiliriz. Kaynak noktasında balyoz ile enerji üretilerek ölçüler alınmıştır.

Veri örnekleme aralığı 2 ms dir. Veri boyu başlangıçta 10 ile 20 saniye arasında alınmıştır. Daha sonra gerekli olan sismik enerjinin ilk 3 saniye içersinde kalması nedeniyle kayıt süresi 3 saniyeye indirilmiştir. Kayıtlar ilk olarak tek vuruşla ve daha sonra üçlü vuruş yapılarak yığılmış kayıtlar elde edilmiştir. Genellikle bütün kayıtlarda son jeofona kadar yeterli enerjinin gittiği görülmektedir.

Veriler Geometrics firması tarafından geliştirilen SEISIMAGER yazılım programı ile analiz edilmiştir. Alınan kayıtların analizi sonucunda S – dalgası derinlik hız modelleri bulunmuştur. Öncelikle frekans-faz hızı spektrumu ve değişim eğrisi belirlenmiş ve daha sonra başlangıç modeli oluşturulmuştur. Başlangıç modelinin belirlenmesi sırasında faz eğrisinin minimum ve maksimum değerelerinden derinlik aralığı hesaplanmış ve modelin sınırları buna göre belirlenmiştir. Ayrıca şekiller üzerinde gözlemsel değerler verilmiştir. Bu değerler enerjinin nekadar derinlere gittiğinide göstermektedir. Bu model iterasyon ile geliştirilerek bu noktaya ait S dalgası – derinlik hız değişim modeli bulunmuştur. Sonuçlar grafik olarak Şekil 85 – 204 de verilmiştir. Değerlendirmenin ilk aşamasında daha önce bu noktaya yakın bir yerden alınan PS logu sonuçları, kuyu logu sonuçları ve önceden SPAC yöntemi ile elde edilen bilgiler kullanılmıştır.

6.3 Dizilim (Pasif) Yöntemi

Pasif yöntemde herhangi bir kaynak kullanılmadan doğrudan gürültü kaydı alınmıştır. Kayıtlar 2006 yılında L dizilimi kullanılarak ve 2007 ve 208 yıllarında ise doğrusal dizilim şeklinde olmuştur. Alıcılar doğal frekansları 2 Hz olan sismometrelerdir. Kullanılan kayıtçı ise Geometrics üretimi GEOD aletidir. L Diziliminde : Alıcılar arası 10 m dir. Ortada bir alıcı ve iki yönde 5 er alıcı konmuş ve toplam 11 lokasyondan mikrotremor ölçümleri alınmıştır. Örnekleme aralığı 2ms ve kayıt uzunluğu 32 sn yedir.

Doğrusal Dizilim : Alıcılar arası 8 metredir. Toplam profil uzunluğu 88 m dir. Örnekleme aralığı ve kayıt uzunluğu aynıdır. Kullanılan sismometre sayısı 12 dir. Profilin ortasına göre derinlik –hız değeri hesaplanmaktadır. Heriki dizilimde inilen teorik derinlik 50 ve 44 m dir.

Bu kayıtlardan her bir noktada en az 20 ile 30 arasında ölçüler alınmıştır. Bu ölçülerdeki amaç Rayleigh dalgalarını yakalamak ve buradan dispersif sinyalleri elde etmektir. L dizilim ölçülerinnin alınması için 50 x 50 m lik boş bir alana gereksinim vardır. Çevresel gürültü ve rüzgarın etkisini azaltmak için sismometrelerin gömülmesi gerekmektedir. Bu sinyal / gürültü oranını artırmaktadır. Yumuşak toprakta sismometreler gömülmüş ama şehir içersinde asfalt üzerine konmuştur.

Pasif yöntem ile elde edilen veriler SEISIMAGER yazılım programı ile analiz edilmiştir. Dizim boyu L sisteminde 50 ve doğrusal sistemde ise 88 m olarak alınmıştır. Veriler değerlendirilerek ölçülen noktayı en iyi temsil eden dispersiyon eğrisi araştırılmıştır. Daha sonra bu eğrilerden Vs dalası hızın derinlikle değişim modeli üretilmiştir.

S- dalgası hz modeleri oşturulurken aktif ve pasif yöntemden elde edilen sonuçlara birlikte bakılmış ve en iyi dispersiyon eğrisini veren yömtem sonuçları kullanılmıştır. Aktif ve pasif yöntemlerden bulunan dispersiyon eğrilerinin birleştirilmesi ve tek bir modelin elde edilmesi sonucu Vs30 haritası hazırlanmasıdır. Çizelge 2 ile çalışma sahasından elde edilen Vs30 değerleri verilmiştir. Şekil 205 ve 206 da Vs30 dağılımı jeoloji ve topoğrafik harita üzeinde verilmiştir.

No	Enlem	Boylam	Vs30
5	41.1364722	29.1244444	455.3528440
7	41.1258333	29.1013333	213.0966640
8	41.1246111	29.1215833	357.3758850
11	41.1137778	29.0870000	314.0264890
12	41.1151389	29.1056389	586.4188230
13	41.1128333	29.1197778	495.6353150
14	41.1189444	29.1266944	575.7448730
16	41.1024722	29.0711667	375.3201900
17	41.1016667	29.0887222	534.4656980
18	41.0973611	29.1090833	344.8580320
19	41.1003611	29.1237500	614.8255000
20	41.1024444	29.1361111	591.1532590
23	41.0896944	29.0705000	574.6649170
24	41.0894139	29.0866750	938.2680050
25	41.0928333	29.0988056	483.6766660
26	41.0882778	29.1187500	887.2042850
27	41.0899722	29.1348333	642.1054080
28	41.0886667	29.1495833	441.1477970
29	41.0880833	29.1669722	615.9912720
33	41.0780278	29.0712778	653.5316770
34	41.0778056	29.0865833	1047.5856900
37	41.0753889	29.1271944	1016.0658000
38	41.0755833	29.1490278	812.8648680
39	41.0757500	29.1653889	647.2413940
40	41.0742222	29.1817778	643.4628300
46	41.0682222	29.0579167	649.5798950
47	41.0646389	29.0700833	742.2782590
48	41.0646667	29.0866111	1394.3182400
49	41.0651111	29.1022500	865.9469600
50	41.0654167	29.1179167	733.1735840
52	41.0642778	29.1500556	715.1461790
53	41.0636944	29.1670000	390.0142210
54	41.0652778	29.1839722	704.4835820
61	41.0543611	29.0536944	1744.7402300
62	41.0543889	29.0702500	1087.5776400
63	41.0535000	29.0838333	394.1737980
64	41.0531667	29.1016111	1311.3693800
65	41.0528889	29.1173333	963.5116580
66	41.0525556	29.1333611	1308.4885300
67	41.0501667	29.1504444	396.4482730
60	41.0531007	29.1043030	044 4461670
70	41.0521944	29.1020270	944.4401070
70	41.0528050	29.1933033	961.5120650
76	41.0474107	29.2100333	1724 1102600
70	41.041333	29.0407500	787 5701020
79	41.0413535	29.0551111	249 4570010
70	41.0411007	29.0094722	644 8872680
80	41.0423611	29.1010278	509 4213870
00	41.0302500	29.1010278	679 9754270
82	41.0392300	29.1178030	354 4576110
83	41.0385278	29.1527222	1262 2535400
84	41.0303270	29.1675833	1328 2360800
85	41.0402222	29.1811944	808 4443360
87	41.0380722	29.2123611	524 3560180
88	41.0386667	29.2280556	331 2087370
93	41.0300007	29.0213333	905 7675780
94	41 0300556	29.0210000	386 8892820
U-1	11.0000000	L0.0000L10	0002020

95	41.0293889	29.0537778	928.9712520
96	41.0302222	29.0687500	417.6430970
97	41.0301389	29.0841111	868.8286130
98	41 0292500	29 1020000	790 5311280
99	41 0294722	29 1166111	516 1014400
100	41 0280556	29 1326667	469 9283140
101	41 0284722	20 1483880	390 2701110
102	41.0287222	29.1641944	338 2030760
102	41.0287222	29.1041944	702 0208120
103	41.0277500	29.1800007	792.0208130
104	41.0280833	29.1945556	688.0972660
105	41.0268056	29.2162500	603.4653320
106	41.0274444	29.2256389	716.4765630
107	41.0257500	29.2453889	822.2290040
112	41.0184722	29.0237222	1074.8618200
113	41.0184722	29.0356944	1021.4777200
114	41.0156111	29.0538611	557.1262210
115	41.0175000	29.0682222	584.0087890
116	41.0162500	29.0838333	722.3394780
117	41.0186944	29.0953056	821.0897220
118	41.0178889	29.1169167	402.4907840
119	41.0165000	29.1326667	760.6649170
120	41.0167500	29.1492778	581.4273680
121	41.0144722	29.1626389	554.5133670
122	41.0148333	29.1798056	1007.6339700
123	41.0161389	29.1958889	1086.8569300
124	41.0148611	29.2118333	835.8453370
125	41.0146667	29.2276944	967.0960690
126	41.0146667	29.2425833	1211.4151600
127	41.0145000	29.2594167	501.6470950
132	41.0075000	29.0228889	548.4415890
133	41.0060556	29.0379444	672.6750490
134	41.0055556	29.0518056	482.0060730
135	41.0054444	29.0683889	1255.9633800
136	41.0063333	29.0835000	1473.0030500
137	41.0045000	29.1005833	1473.3491200
138	41.0047222	29.1160000	1366.6667500
139	41.0037778	29.1334444	1365.9681400
140	41.0039722	29.1480833	940.5322880
141	41.0029444	29.1598333	758.4328610
142	40.9998889	29.1796111	1136.0238000
143	41.0033889	29.1952222	480.3001100
144	41.0028056	29.2116111	607.9752810
145	41.0028333	29.2273611	455.5072330
146	41.0020833	29.2430278	992.9171750
147	41.0019722	29.2588056	749.0173340
148	41.0017500	29.2748056	797.5974120
153	40.9977778	29.0249167	255.5687410
154	40.9938333	29.0345278	624.5639650
155	40.9952778	29.0521667	555.8134160
156	40.9936111	29.0672222	388.6292420
157	40.9928056	29.0826944	588.9599000
158	40.9942222	29.0990278	692.6107790
159	40.9926111	29.1145556	473.6207580
160	40.9938611	29.1312778	784.8700560
161	40.9931389	29.1471389	714.8282470
162	40.9920000	29.1629444	863.3457030
163	40.9915278	29.1792222	699.5146480
164	40.9911667	29.1952778	488.9464110
165	40.9849444	29.2114444	814.6802980

166	40.9906111	29.2266389	920.1203610
167	40.9903056	29.2425556	409.0505370
168	40.9900556	29.2583611	800.4321290
169	40.9901944	29.2738333	564.9592290
170	40.9904444	29.2866944	850.6887210
175	40.9839444	29.0335556	851.0140380
176	40.9823333	29.0511944	796.5504760
177	40.9802222	29.0685556	832.8438720
178	40.9821667	29.0811667	969.1099240
179	40.9805556	29.1001667	883.1548460
180	40.9804444	29.1164722	671.1762700
181	40.9801944	29.1304444	500.5849610
182	40.9796944	29.1452500	645.2904050
183	40.9788611	29 1630556	588 0594480
184	40 9805278	29 1789167	453 6504820
185	40 9795833	29 1943056	489 4055790
186	40 9789444	29 2092500	835 9305420
187	40.9800278	29 2267500	422 0155330
188	40.9790556	29 2434167	403 1610110
189	40 9778611	29 2582500	642 6251830
190	40.9789444	29 2750000	421 3080140
191	40.9760278	29 2886111	816 3475000
196	40.9705278	29.0515000	684 0168000
190	40.9708889	29.0515000	1291 0270000
197	40.970505278	29.0000007	367 4743000
190	40.9705278	29.0032222	741 560000
200	40.9084444	29.0901309	1474 2620000
200	40.9707222	29.1151944	814 0026000
201	40.9090278	29.1333000	814.0030000
202	40.9703889	29.1471111	642 6807000
203	40.9080944	29.1004722	526 707000
205	40.9672778	29.1955833	1228 4610000
200	40.9670000	29.2090333	1526.4610000
207	40.9005550	29.2258011	554.7674000
208	40.9005550	29.2415556	449.2391000
209	40.9651389	29.2585833	541.0447000
210	40.9629167	29.2737778	561.4814000
211	40.9646667	29.2891111	762.8239000
212	40.9659167	29.3037222	597.9149000
213	40.9655278	29.3208611	656.7228000
217	40.9584167	29.0804167	353.7895000
218	40.9584167	29.0988611	329.6992000
219	40.9575000	29.1141111	440.6248000
221	40.9561111	29.1462222	968.8483890
222	40.9561667	29.1652778	1062.0180000
223	40.9586389	29.1779722	659.9663000
224	40.9547778	29.1930833	1124.2990000
225	40.9548889	29.2142500	562.6200000
226	40.9544167	29.2250000	622.2019000
227	40.9590278	29.2432500	401.1853000
228	40.9539722	29.2555833	807.9129000
229	40.9534167	29.2726111	435.3414000
230	40.9521111	29.2891944	540.6978000
231	40.9525278	29.3058611	688.6927000
232	40.9536111	29.3200278	738.7243000
233	40.9529167	29.3371667	584.9290000
237	40.9483611	29.1022778	724.7348000
238	40.9449722	29.1144444	1340.0510000
239	40.9458611	29.1311667	685.0662840
240	40.9441111	29.1471111	873.7777100

1	I I			
	241	40.9426111	29.1597778	459.3666000
	245	40.9421111	29.2238333	648.3208000
	248	40.9415556	29.2728611	346.6327210
	249	40.9409722	29.2881111	498.9058000
	250	40.9415556	29.3049167	419.0419000
	251	40.9404722	29.3176944	407.3985000
	252	40.9386667	29.3363611	777.3248000
	253	40.9368889	29.3558889	505.1569000
	257	40.9354722	29.1164167	500.2563000
	258	40.9312778	29.1317778	1225.4110000
	259	40.9336667	29.1455833	825.2267000
	260	40.9326944	29.1610000	1071.0860000
	263	40.9303056	29.2086667	608.7883000
	264	40.9268056	29.2253333	271.4957000
	265	40.9314056	29.2391667	936.0532000
	267	40.9279722	29.2715833	465.0695000
	268	40.9298056	29,2873889	478.4109000
	269	40.9291389	29.3038611	1409.9960000
	270	40 9293611	29 3195833	581 1300000
	271	40 9283889	29 3356667	811.3907000
	272	40 9297222	29.3508611	1268 1630000
	273	40 9272222	29 3683889	1507 1100000
	277	40 9204722	29 1438056	670 8350000
	278	40 9208889	29 1593333	639 7308000
	281	40 9196389	29 2081111	824 1093750
	282	40 9184722	29 2257222	333 3617550
	283	40.9188611	29 2386361	303 6925350
	284	40.9183611	29.2565278	1125.5970000
	285	40 9186944	29 2708889	534 6370000
	286	40.9169722	29.2874444	1275.2920000
	287	40.9174167	29.3028889	1333.3219000
	288	40.9163889	29.3133333	452.7046810
	289	40.9156667	29.3349167	923.1633910
	290	40.9155278	29.3529444	1559.5678700
	291	40.9154722	29.3669917	1304.1460000
	292	40.9148889	29.3812500	630.6695000
	295	40.9073333	29.1438056	854.7252000
	297	40.9070833	29.1769444	1371.4020000
	298	40.9073333	29.1932500	908.1398000
	299	40.9063056	29.2021944	423.5528000
	300	40.9068333	29.2250556	1073.9990000
	301	40.9050000	29.2384167	669.2878000
	302	40.9052500	29.2554167	903.3031000
	303	40.9055278	29.2714167	965.2379150
	304	40.9040833	29.2870833	411.9892270
	305	40.9036389	29.3033333	397.6670230
	307	40.9033333	29.3350278	648.6254000
	308	40.9038889	29.3504167	295.5334470
	309	40.9036667	29.3668611	576.5836180
	310	40.9031111	29.3823333	436.9199520
	311	40.9031944	29.3981667	435.7256770
	314	40.8959722	29.1756111	973.5396000
	315	40.8953611	29.1914167	1379.2741700
	316	40.8951111	29.2088056	713.3755490
	317	40.8946806	29.2230833	772.6558840
	318	40.8938833	29.2394444	426.3989260
	319	40.8931389	29.2540278	948.7459110
	320	40.8917778	29.2715000	521.2521970
	321	40.8906944	29.2873611	400.3045960
Ц				

	322	40.8891944	29.3030278	384.8045350
	323	40.8951389	29.3188333	452.0929870
	324	40.8933056	29.3344722	713.6098630
	325	40.8912778	29.3488611	509.0727230
	326	40.8937778	29.3654167	448.5003050
	327	40 8908889	29 3827778	474 1710820
	328	40 8909306	29 3978333	288 5747990
	329	40.8905833	29.4136889	557 7933350
	332	40.8816944	29 2090833	1046 5434600
	333	40.8817778	29.2213611	1138 5859400
	334	40.8817222	29 2394444	767 7601930
	334	40.0017222	29.2540278	726 6047630
	335	40.0015278	29.2340276	1152 1200800
	330	40.8823833	29.2101222	621 2025170
	337	40.8803011	29.287 1007	621.3925170
	338	40.8823333	29.2946667	588.4965210
	339	40.8816667	29.3188333	403.9342040
	340	40.8801667	29.3341111	1238.0728800
	341	40.8790278	29.3493611	717.9852290
	342	40.8798889	29.3660000	682.4616700
	343	40.8794444	29.3813056	575.3955080
	344	40.8790833	29.3983389	402.9093322
	345	40.8786667	29.4137778	382.9376830
	348	40.8715278	29.2289722	770.0784300
	349	40.8763056	29.2412222	522.9031980
	350	40.8696944	29.2541944	488.5614320
	351	40.8689722	29.2713333	997.9433590
	352	40.8688056	29.2867778	839.3923340
	353	40.8699167	29.3037778	1051.0936300
	354	40.8686389	29.3174444	655.9169310
	355	40.8682778	29.3331389	440.3641360
	356	40.8658056	29.3498611	727.4990840
	357	40.8674861	29.3651222	332.6293950
	358	40.8676111	29.3801389	531.3961180
	359	40.8650556	29.3957500	521.8760990
	360	40.8669167	29.4126389	510.7114260
	362	40.8570556	29.2687500	465.3223270
	363	40.8568056	29.2848056	1185.9879200
	364	40.8565833	29.3012500	472.7667240
	365	40.8560833	29.3165000	418.4559630
	366	40.8609444	29.3336111	513.7299800
	367	40.8596667	29.3474722	467.8738100
	368	40.8561667	29.3650556	427.8136600
	369	40.8555278	29.3812778	743.1433720
	370	40.8549722	29.3963056	443.5042720
	373	40.8453333	29.2999722	1114.3366700
	377	40.8432222	29.3642778	385.1165770
	378	40.8410000	29.3793889	1392.4941400
	380	40.8330000	29.2848056	455.2310180
	381	40.8321111	29.2998333	684.9802860
	382	40.8327500	29.3173056	1300.1478300
	383	40.8306944	29.3318056	755.5156860
	384	40.8305556	29.3493333	410.4295960
	385	40.8324444	29.3628889	477.9739690
	386	40.8312194	29.3797278	516.7480470
	389	40.8215000	29.2838611	831.5140380
	390	40.8209444	29.3000556	724.6144410
	391	40.8195556	29.3143056	419.8694760
	393	40.8197222	29.3483056	458.4837340
	394	40.8187778	29.3635000	929.3939210
Ц				

396	40.8076667	29.3475833	194.4113460
397	40.8082222	29.3640000	316.7838130
398	40.7977778	29.3473611	728.3904420
P2	40.8798889	29.4277222	615.2208000
P3	41.0230556	29.0085833	969.8087000

Çizelge 2. Çalışma sahasından elde edilen Vs30 değerleri.

7. Dizilim (Array) Ölçümleri

Dizilim ölçmleri iki farklı bölgede yapılmıştır. Anadolu yakası ve Silivri civarı. Silivri civarındaki ölçümler sonradan projeye ilave edilmiştir. Ölçümler üçgen dizilim yöntemiyle toplanmıştır. İç içe üç üçgenin köşeleri ve bu üçgenlerin ortak merkezine toplam 10 alet yerleştirilmiştir. Kullanılan kayıtçılar ve sismometreler ayni özelliğe sahiptirler. Ölçü sistemi SPAC yöntemine göre dizayn edilmiştir. Ölçüm noktalarının yerleri H/V ve ReMi ölçümlerinden farklı konumlarda alınmıştır. Noktaların yerleri OYO firması yetkilileriyle ortak olarak belirlenmiştir. Yer seçiminde daha önce yapılan jeofizik ölçümler ve mevcut jeolojik bilgiler göz önüne alınmıştır. Taban kayasının derin olduğu ve ReMi yöntemiyle taban kayasına ulaşılamıyan noktalarda dizilim noktaları belirlenmiştir.

Ölçüler REFTEK texan 125 tek kanallı sayısal kayıtçıları kullanılarak alınmıştır. Bu aletlerden on tanesi aynı anda kullanılmıştır. Aletlerin örnekleme aralığı değişkendir. Bu çalışmada 1 samniyede 100 örnek alınmıştır. Kayıtçılar aynı anda bir kutu içersine konularak ölçüm parametreleri ve GPS ile dahili saatlerinin ayarı yapılabilmektedir. Labaratuvarda istenilen zamanda başlıyacak şekilde ayarlanmaktadırlar. Arazide dsadece noktaya yerleştirilen sismometreye bağlanmtısı yapılmaktadır. Kayıt süresi 80 dakikadır. Bütün aletlerde kayıt aynı anda başlayıp aynı anda bitmektedir. Bir günde iki farklı noktada kayıtların alınması mümkündür. Sismometre olarak GURALP VM60 model tek bileşen alıcılar kullanılmıştır. Bu sismometreler yarı broadband özelliğine sahiptir. Band aralığı 0 ile 100 Hz arasındadır.

Ölçülen veriler gerekli format dönüşümü yapıldıktan sonra İş İstasyonlarına taşınmıştır. Burada yeni bir forma döşümü ile SAC formatına dönüştürülmüştür. SAC2000 programı ile veriler incelendikten ve gerekli düzeltmelerden sonra ASCII formatına çevrilmiş ve PC ortamına taşınmıştır. Verilerin analizinde diğer ölçümlerde olduğu gibi SEISIMAGER yazılım programı kullanılmıştır. Bu program veriyi SEG2 formatında kabul etmektedir. Ayrıca veriler tek bir dosyada birden fazla alıcının kaydını ihtiva etmektedir. Petrol endüstrisinde kayıtlar çoklu jeofonla alındığından bir grup jeofon kaydı tek bir dosyada bulunmaktadır. Bu çalışmada her bir noktadaki kayıt bir kayıtçı ile alınmış ve herbir kayıt ayrı bir dosyaya kayıt edilmiştir. Elde edilen verilerin SEISIMAGER programi ile analiz edilebilmesi için SEG2 formatına çevrilmesi gerekmektedir. Daha önceden 10 ayrı dosyada ASCII formatındaki verileri istenilen formata dönüştürmek için yeni bir yazılım programı geliştirilmiştir. Bu program SPAC yöntemine uygun olarak 10 ayrı noktada alınan verileri tek bir dosyaya yazar. Bu dönüşümden önce 80 dakika alınan verilerin 2 dakika uzunluğunda kesilerek 37 tane veri grubu oluşturulmalıdır. Daha sonra bu gruplar teker teker dönüşüm programı ile SEG2 formatına dönüştürülmüştür. Her bir noktadaki kayıtlar bu islemlerden geçirildikten sonra SEISIMAGER programı ile değerlendirilmiş ve S – dalgası hız modelleri üretilmiştir.

Anadolu Yakası Array Ölçümleri

Bu bölgede 30 noktada ölçümler yapılmıştır. Şekil 207 ölçüm noktalarının lokasyonlarını göstermektedir. Çizelge 3 de ise bu noktaların enlem ve boylamları verilmiştir. Her bir nokta için dispersiyon grafiği, eğrisi ve tek boyutlu hız modelleri üretilmiş ve Şekil 9 – 238 de görüntülenmiştir. Çizelge 4

de inilen maksimum derinlik ve bu derinlikteki Vs – dalgası hız modeli verilmiştir.

No	Tarih	Saat	Enlem	Boylam
M01	7.4.2008	10:00	41.0045806	29.0188333
M02	26.4.2008	12:45	41.0769750	29.0676583
M03	26.4.2008	09:30	41.0814417	29.0690778
M04	16.5.2008	10:00	41.0351194	29.0703750
M05	5.4.2008	13:30	40.9319917	29.1216028
M06	7.4.2008	13:30	40.9826389	29.1370000
M07	12.4.2008	10:00	41.0231611	29.1728139
M09	12.4.2008	13:30	40.9264194	29.1741639
M08	5.4.2008	10:00	41.0153889	29.1766111
M11	10.4.2008	13:00	40.9308083	29.2179222
M10	10.4.2008	10:00	40.9379722	29.2179722
M12	9.4.2008	10:00	40.9602111	29.2180750
M13	11.4.2008	10:00	41.0174111	29.2269639
M14	8.4.2008	10:00	40.9808611	29.2365278
M15	9.4.2008	13:30	40.9896556	29.2421750
M16	11.4.2008	13:30	41.0075833	29.2755278
M17	6.4.2008	13:30	40.9318306	29.2769139
M18	8.4.2008	13:30	40.9925278	29.2851667
M19	4.4.2008	10:00	40.9041944	29.2881944
M20	6.4.2008	10:00	40.9546083	29.2993722
M21	3.4.2008	13:30	40.9341667	29.3259083
M22	1.4.2008	10:00	40.8207000	29.3335611
M24	1.4.2008	13:30	40.9028750	29.3439306
M23	3.4.2008	10:00	40.8178944	29.3439778
M25	30.3.2008	13:30	40.8918056	29.3504722
M26	30.3.2008	10:00	40.8849139	29.3521250
M27	31.3.2008	10:00	40.8318361	29.3556667
M28	31.3.2008	13:30	40.8234194	29.3579889
M29	29.3.2008	10:00	40.8434611	29.3615750
M30	29.3.2008	13:30	40.8610917	29.3647500

Çizelge 3. Anadolu yakası array ölçümlerinin koordinatları ve ölçüm tarihleri.

Ölçümlerde iki farklı array boyu alınmıştır. 5 noktada dış üçgenin kenar uzunluğu 200 m dir. İnilen derinlik bu değerle orantılı olduğundan daha derinlerden bilgi almak için büyük array boyu bu noktalarda 200 m seçilmiştir.

Nokta Num.	İnilen Derinlik (m)	Vs- Dalga Hızı (m/s)	Dizilim Boyu (m)
M01	31.00	990	100
M02	29.00	903	100
M03	90.00	700	100

29.00	760	200
43.00	506	100
60.00	520	100
29.00	706	100
43.00	1000	100
31.00	710	100
29.00	582	100
31.00	658	100
28.00	893	100
22.00	500	100
21.00	605	100
22.00	455	100
63.00	1020	100
31.00	546	100
16.00	640	100
40.00	550	100
134.00	1000	100
100.00	800	100
82.00	1100	200
80.00	900	200
90.00	950	100
120.00	1100	100
130.00	750	100
130.00	1500	200
80.00	1600	200
110.00	600	100
125.00	780	100
	29.00 43.00 60.00 29.00 43.00 31.00 29.00 31.00 28.00 22.00 63.00 31.00 16.00 40.00 134.00 100.00 82.00 80.00 90.00 120.00 130.00 130.00 80.00 110.00	29.00 760 43.00 506 60.00 520 29.00 706 43.00 1000 31.00 710 29.00 582 31.00 658 28.00 893 22.00 500 21.00 605 22.00 455 63.00 1020 31.00 546 16.00 640 40.00 550 134.00 1000 100.00 800 82.00 1100 80.00 900 90.00 950 120.00 1100 130.00 750 130.00 1500 80.00 1600 110.00 600 110.00 780

Çizelge 4. Ölçüm noktalarından elde edilen maksimum derinlik ve Vs hız değerleri

Silivri Civarı Array Ölçümleri

Bu bölgedeki ölçümler OYO firmasını isteği üzerine yapılmıştır. Noktaların yeri bu firma tarafından seçilmiştir. İki ayrı yerde bir doğrultu boyunca ve her bir doğrultuf-da üç noktada ölçüler alınmıştır (Şekil 208). Toplam nokta sayısı 6

No Tarih Saat Enlem Boylam MA01 24 Temmuz 2008 13:00 41.3312889 28.1834389 MA02 24 Temmuz 2008 09:30 41.2955333 28.1594778 MA03 23 Temmuz 2008 13:00 41.2559361 28.1276250 MA04 23 Temmuz 2008 06:30 41.1<u>429611</u> 28.3901306 MA05 22 Temmuz 2008 13:00 41.1151111 28.3720611 MA06 22 Temmuz 2008 09:30 41.0865861 28.3542667

dır. Burada arrayin boyu büyük alınmıştır. Kullanılan array boyu 200 m dir. Çizelge 5 de noktaların koordinatları ve ölçüm tarihleri verilmiştir.

Çizelge 5. Ölçüm noktalarının koordinatları ve ölçüm tarihleri.

Her bir nokta için dispersiyon grafiği, eğrisi ve tek boyutlu hız modelleri üretilmiş ve Şekil 239 – 244 de görüntülenmiştir. Bu hız modellerinden elde edilen maksimum derinlik ve bu derinlikteki Vs – dalgası hız modeli Çizelge 6 da verilmiştir.

Nokta Num.	İnilen Derinlik(m)	Vs- Dalga Hızı(m/s)	Dizilim Boyu(m)
 MA01	100.00	700	200
MA02	95.00	570	200
MA03	90.00	700	200
MA04	45.00	810	200
MA05	45.00	950	200
MA06	55.00	900	200

Çizelge 6. Ölçüm noktalarından elde edilen maksimum derinlik ve Vs hız değerleri

8. Sonuçlar

Proje kapsamında bugüne kadar çalışma sahasının gridlenmesi, kullanılacak aletlerin tanınması, doğudan itibaren 304 noktada toplam 644 ölçünün alınması, alınan ölçülerin labaratuvar ortamında bilgisayarlara aktarılması, mevcut yazılım programlarının toplanan veriye uygun olarak geliştirilmesi, Geometrics firması tarafından sağlanan yazılım programının kullanımının öğrenilmesi ve verilerin

analiz edilmesidir. Proje başlangıcında, Enstitü ve İstanbul Büyükşehir Belediyesi ekibine bir konferans verilerek yapılan çalışmada kullanılacak yöntemler tanıtılmıştır. Ayrıca proje sırasında Japonya dan mikrotremor konusunda uzman bir Profesör davet edilmiştir. Prof. Okada iki ay sure enstitü de kalmış ve 42 saat ders vermiştir. Derslerin yanında araziden alınan verilerin kalitesi ve değerlendirilmeleri konusunda karşılıklı bilgi alışverişinde bulunulmuştur. Bazı veriler Prof. Okada ile birlikte değerlendirilmiş ve proje elemanları bu konuda deneyim kazanmışlardır.

Ölçümler 2008 yılı Eylül ayında bitirilmiştir. Toplanan verilerin analizi yapılmış bu nihai rapor hazırlanmıştır. Zemin büyütmesi ve hakim periyod dağılım haritası dışında ReMi ve Array ölçümlerinden üretilen modellerden bulunan S dalgası hız değerlerinden ortalama 30 m derinliğe tekabül eden bir hız dağılım haritası oluşturulmuştur.

Yapılan analiz sonuçları bilinen jeoloji ile karşılaştırıldığında benzerlikler göstermektedir. Ayrıca topoğrafya ile de bir uyumluluk gözükmektedir. Ölçülen noktaların çoğunda aktif (ReMi) yöntemiyle dispersiyon eğrileri elde edilmiş ve derinlik hız modelleri oluşturulmuştur. Pasif yöntem ile temel kayanın daha derin olduğu noktalarda ölçüler alınmıştır. Bu yöntemle ReMi yöntemiyle elde edilemeyen noktalarda derinlik hız bilgisi daha derinler için sağlanmıştır.

9. Kaynaklar

Aki, K., 1957. Apace and time spectra of stationary stochastic waves, with special reference to microtremors. Bull. Earthq. Res. Inst., 35, p415 - 456.Aki, K. and P.G. Richards, 1980. Quatitative seismology: theory and methods.W.H. Freeman and Company Publication.

Capon, J., 1969. High resolution frequency – wavenumber spectrum analysis. Proc. IEEE, 57, p1408 – 1418.

Cranswick E., Ozel O., Meremonte M., Erdik M., Safak E., Mueller C., Overturf D., Frankel A., 2000. Earthquake damage, site response and building response in Avcılar, West of Istanbul, Turkey, International Journal for Housing science and its applications, Special Issue: Kocaeli Earthquake 1999, Okay Ural, Editor in Chief, Vol 24, No 1, 2000, pp 85-96.

Field, E. H., Clement, A. C., Jacob, K. H., Aharonian, V., Hough, S. E.,

Friberg, P. A., Babaian, T. O., Karapetian, S. S., Hovanessian, S. M., and

Abramian, H. A., 1995. Earthquake Site Response study in Giumri , Armenia Using Ambient Noise Observations, Bull. Seismol. Soc. America, 85, 349 – 353.

Finn, W.D.L., 1991. Geotechnical engineering aspects of microtremors, Proc.

Fourth Int. Conf. On Seismic Zonation, Stanford, California, I, 199-259.

Gutierrez, C. and Singh, S.K., 1992. A site effect study in Acapulco, Guerrero,

Mexico : comparison of results from strong motion and microtremor data.

Bull. Seismol. Soc. America. 82, 642 659.

Herrmann, R.B., 1987. Computer Programs in Seismology. Saint Louis University.

Horike, M., 1985. Inversion of phase velocity of long-period microtremors to the S-wave velocity structure down to the basement in urbanized areas. J.Phys. Earth, 33, 59-96.

Kagami, H., S. Okada, K. Shiono, M.Oner, M. Dravinski and A.K. Mal, 1986. Observation of 1 to 5 second mikrotremors and their application to earthquake engineering. Part III. A two- dimensional study site effects in S. Fernando valley, Bull.Seis. Soc. Am. 76, 1801 – 1812.

Kearey, P. ve Brooks M., 1984. An introduction to geophysical exploration. Blackwell Scientific Publications, Oxford.

Kobayashi, H., K. Seo and S. Midorikawa, 1986. Estimated strong ground

motions in the Mexicocity due to the Michoacan, Mexico earthquake of September 19, 1985 based on characteristics of microtremor. Part 2, Report on seismic microzonation studies of the Mexico earthquake of September 19, 1985, The Graduate School of Nagatsua, Tokyo Institute of Technology, Yokohoma, Japan.

Konno, K. and Ohmachi, T., 1998. Ground-Motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor, Bull. Seismol. Soc. America. 88, No 1, 228 - 241.

LaCoss, R. T., E.J. Kell and M.N. Toksöz, 1969. Estimation of seismic noise structure using arrays. Geophysics, 34, p21 – 38.

Lermo , J. and Chavez-Garcia J. F., 1994. Are microtremors useful in site response evaluation, BSSA, Vol. 84, No 5, pp. 1350-1364.

Liaw, A. L. and McEvilly, T. V., 1979. Microseisms in geotermal exploration – Studies in Gras Valley, Nevada. Geophysics, 44, p1097 – 1115.

Matsushima, T. and H. Okada, 1990. Determination of deep geological structures under urban areas using long-period microtremors. BUSURI-TANSA Vol.43, No. 1, p 21-33.

McDonough, R. N., 1974. Maximum-entropy spatial processing of array data. Geophysics, 39, p843 – 851.

Nakamura, Y. ,1989. A method of dynamic characteristics estimation of subsurface using microtremor on the ground surface, QR of RTRI 30, no .1, February, 25 - 33.

Thorson, J. R., and Claerbout, J. F., 1985, Velocity-stack and slant-stack stochastic inversion: *Geophysics, v. 50,* p. 2727-2741.

Suzuki, T., Adachi, Y., and Tanaka, M. 1995. Applications of microtremor measurements to the estimation of earthquake ground motions in Kushiro City during the Kushiro-Oki earthquake of 15 January 1993. Earthquake Eng. Struct. Dynamics, 24, 59